Smooth-Guided Implicit Data Augmentation for Domain Generalization

一般化 领域(数学分析) 计算机科学 人工智能 数学 数学分析
作者
Mengzhu Wang,Junze Liu,Ge Luo,Shanshan Wang,Wei Wang,Long Lan,Ye Wang,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3377439
摘要

The training process of a domain generalization (DG) model involves utilizing one or more interrelated source domains to attain optimal performance on an unseen target domain. Existing DG methods often use auxiliary networks or require high computational costs to improve the model's generalization ability by incorporating a diverse set of source domains. In contrast, this work proposes a method called Smooth-Guided Implicit Data Augmentation (SGIDA) that operates in the feature space to capture the diversity of source domains. To amplify the model's generalization capacity, a distance metric learning (DML) loss function is incorporated. Additionally, rather than depending on deep features, the suggested approach employs logits produced from cross entropy (CE) losses with infinite augmentations. A theoretical analysis shows that logits are effective in estimating distances defined on original features, and the proposed approach is thoroughly analyzed to provide a better understanding of why logits are beneficial for DG. Moreover, to increase the diversity of the source domain, a sampling-based method called smooth is introduced to obtain semantic directions from interclass relations. The effectiveness of the proposed approach is demonstrated through extensive experiments on widely used DG, object detection, and remote sensing datasets, where it achieves significant improvements over existing state-of-the-art methods across various backbone networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Percy发布了新的文献求助10
刚刚
刚刚
Jasper应助核桃采纳,获得10
2秒前
充电宝应助核桃采纳,获得10
2秒前
koukaki完成签到,获得积分10
2秒前
owldan完成签到 ,获得积分10
2秒前
卢静静发布了新的文献求助10
4秒前
4秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
7秒前
Jasper应助wiwi采纳,获得30
7秒前
丘比特应助lxgz采纳,获得10
9秒前
HansStone完成签到,获得积分10
11秒前
塵埃发布了新的文献求助10
12秒前
健忘远山发布了新的文献求助10
12秒前
邱邱完成签到,获得积分20
12秒前
14秒前
拓跋箴完成签到,获得积分10
14秒前
在水一方应助鹿雅彤采纳,获得10
14秒前
JamesPei应助火星上鑫鹏采纳,获得10
15秒前
风清扬发布了新的文献求助10
15秒前
Vincey完成签到,获得积分10
17秒前
共享精神应助邱邱采纳,获得10
18秒前
Ade完成签到,获得积分10
18秒前
19秒前
拼搏的高高完成签到,获得积分10
19秒前
星辰大海应助坦率抽屉采纳,获得10
19秒前
小蘑菇应助MyMuses采纳,获得10
20秒前
传奇3应助仁爱的晓刚采纳,获得10
22秒前
24秒前
鹿雅彤完成签到,获得积分10
24秒前
解语花发布了新的文献求助30
25秒前
Ava应助岁岁平安采纳,获得10
26秒前
科研通AI2S应助大家好采纳,获得200
26秒前
27秒前
鹿雅彤发布了新的文献求助10
29秒前
31秒前
32秒前
赘婿应助典雅的俊驰采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578