已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Smooth-Guided Implicit Data Augmentation for Domain Generalization

一般化 领域(数学分析) 计算机科学 人工智能 数学 数学分析
作者
Mengzhu Wang,Junze Liu,Ge Luo,Shanshan Wang,Wei Wang,Long Lan,Ye Wang,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3377439
摘要

The training process of a domain generalization (DG) model involves utilizing one or more interrelated source domains to attain optimal performance on an unseen target domain. Existing DG methods often use auxiliary networks or require high computational costs to improve the model's generalization ability by incorporating a diverse set of source domains. In contrast, this work proposes a method called Smooth-Guided Implicit Data Augmentation (SGIDA) that operates in the feature space to capture the diversity of source domains. To amplify the model's generalization capacity, a distance metric learning (DML) loss function is incorporated. Additionally, rather than depending on deep features, the suggested approach employs logits produced from cross entropy (CE) losses with infinite augmentations. A theoretical analysis shows that logits are effective in estimating distances defined on original features, and the proposed approach is thoroughly analyzed to provide a better understanding of why logits are beneficial for DG. Moreover, to increase the diversity of the source domain, a sampling-based method called smooth is introduced to obtain semantic directions from interclass relations. The effectiveness of the proposed approach is demonstrated through extensive experiments on widely used DG, object detection, and remote sensing datasets, where it achieves significant improvements over existing state-of-the-art methods across various backbone networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时老完成签到 ,获得积分10
1秒前
婕婕子完成签到,获得积分10
2秒前
gwff关注了科研通微信公众号
2秒前
2秒前
苹果完成签到 ,获得积分10
3秒前
Arit完成签到,获得积分10
4秒前
忧心的白开水关注了科研通微信公众号
4秒前
5秒前
细心蚂蚁发布了新的文献求助10
7秒前
zyc1111111完成签到,获得积分10
9秒前
科研通AI2S应助妖妖灵采纳,获得10
10秒前
10秒前
14秒前
小李完成签到,获得积分10
15秒前
shadow完成签到,获得积分20
16秒前
shadow发布了新的文献求助20
18秒前
萧平生完成签到,获得积分10
20秒前
20秒前
22秒前
黑咖啡发布了新的文献求助10
23秒前
yybo发布了新的文献求助10
27秒前
111231发布了新的文献求助10
27秒前
小立关注了科研通微信公众号
28秒前
dentistG发布了新的文献求助10
28秒前
鹤昀完成签到 ,获得积分10
29秒前
科研通AI2S应助ceeray23采纳,获得20
29秒前
cyp完成签到,获得积分10
33秒前
元夕夕夕完成签到,获得积分10
33秒前
雍雍完成签到 ,获得积分10
37秒前
1234发布了新的文献求助20
38秒前
李某某应助ceeray23采纳,获得20
39秒前
39秒前
无极微光应助闪闪的熠彤采纳,获得20
39秒前
鱿鱼丝一种天赋完成签到,获得积分20
39秒前
40秒前
40秒前
钟梓袄完成签到,获得积分10
40秒前
rsd发布了新的文献求助10
43秒前
夏惋清完成签到 ,获得积分0
44秒前
yybo完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602854
求助须知:如何正确求助?哪些是违规求助? 4688078
关于积分的说明 14852191
捐赠科研通 4686208
什么是DOI,文献DOI怎么找? 2540259
邀请新用户注册赠送积分活动 1506881
关于科研通互助平台的介绍 1471458