Smooth-Guided Implicit Data Augmentation for Domain Generalization

一般化 领域(数学分析) 计算机科学 人工智能 数学 数学分析
作者
Mengzhu Wang,Junze Liu,Ge Luo,Shanshan Wang,Wei Wang,Long Lan,Ye Wang,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3377439
摘要

The training process of a domain generalization (DG) model involves utilizing one or more interrelated source domains to attain optimal performance on an unseen target domain. Existing DG methods often use auxiliary networks or require high computational costs to improve the model's generalization ability by incorporating a diverse set of source domains. In contrast, this work proposes a method called Smooth-Guided Implicit Data Augmentation (SGIDA) that operates in the feature space to capture the diversity of source domains. To amplify the model's generalization capacity, a distance metric learning (DML) loss function is incorporated. Additionally, rather than depending on deep features, the suggested approach employs logits produced from cross entropy (CE) losses with infinite augmentations. A theoretical analysis shows that logits are effective in estimating distances defined on original features, and the proposed approach is thoroughly analyzed to provide a better understanding of why logits are beneficial for DG. Moreover, to increase the diversity of the source domain, a sampling-based method called smooth is introduced to obtain semantic directions from interclass relations. The effectiveness of the proposed approach is demonstrated through extensive experiments on widely used DG, object detection, and remote sensing datasets, where it achieves significant improvements over existing state-of-the-art methods across various backbone networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
XI_2001发布了新的文献求助10
1秒前
1秒前
1秒前
xW12123完成签到,获得积分10
2秒前
2秒前
2秒前
季秋十二发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
爱学习的小燕子完成签到,获得积分10
3秒前
3秒前
dato12423完成签到,获得积分10
3秒前
思源应助百事可乐采纳,获得10
3秒前
夏夏发布了新的文献求助10
3秒前
lu完成签到,获得积分10
3秒前
十七完成签到,获得积分10
3秒前
4秒前
直率冷雁发布了新的文献求助10
4秒前
复杂小凡完成签到,获得积分20
4秒前
希望天下0贩的0应助小唐采纳,获得10
4秒前
4秒前
邓什么邓发布了新的文献求助10
4秒前
全力以赴先生完成签到,获得积分10
4秒前
橙子完成签到,获得积分10
4秒前
michael发布了新的文献求助30
5秒前
zz完成签到,获得积分10
5秒前
5秒前
张恒发布了新的文献求助10
5秒前
七月发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
6秒前
6秒前
7秒前
汤姆猫发布了新的文献求助10
7秒前
7秒前
JYJ关注了科研通微信公众号
7秒前
JamesPei应助国宝采纳,获得10
7秒前
小火孩发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210