Smooth-Guided Implicit Data Augmentation for Domain Generalization

一般化 领域(数学分析) 计算机科学 人工智能 数学 数学分析
作者
Mengzhu Wang,Junze Liu,Ge Luo,Shanshan Wang,Wei Wang,Long Lan,Ye Wang,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3377439
摘要

The training process of a domain generalization (DG) model involves utilizing one or more interrelated source domains to attain optimal performance on an unseen target domain. Existing DG methods often use auxiliary networks or require high computational costs to improve the model's generalization ability by incorporating a diverse set of source domains. In contrast, this work proposes a method called Smooth-Guided Implicit Data Augmentation (SGIDA) that operates in the feature space to capture the diversity of source domains. To amplify the model's generalization capacity, a distance metric learning (DML) loss function is incorporated. Additionally, rather than depending on deep features, the suggested approach employs logits produced from cross entropy (CE) losses with infinite augmentations. A theoretical analysis shows that logits are effective in estimating distances defined on original features, and the proposed approach is thoroughly analyzed to provide a better understanding of why logits are beneficial for DG. Moreover, to increase the diversity of the source domain, a sampling-based method called smooth is introduced to obtain semantic directions from interclass relations. The effectiveness of the proposed approach is demonstrated through extensive experiments on widely used DG, object detection, and remote sensing datasets, where it achieves significant improvements over existing state-of-the-art methods across various backbone networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HHH完成签到,获得积分10
1秒前
房房房完成签到,获得积分10
1秒前
高高的寒云完成签到 ,获得积分10
2秒前
潘fujun完成签到 ,获得积分10
2秒前
tly完成签到,获得积分10
2秒前
2秒前
善良的函发布了新的文献求助10
2秒前
haha发布了新的文献求助20
3秒前
4秒前
lbx发布了新的文献求助10
4秒前
AAA发布了新的文献求助10
5秒前
5秒前
科研痴完成签到,获得积分10
6秒前
Hilda007应助张传明采纳,获得10
6秒前
7秒前
古月完成签到,获得积分10
7秒前
7秒前
Hello应助瞿寒采纳,获得10
8秒前
8秒前
抗抗发布了新的文献求助10
8秒前
meng发布了新的文献求助10
8秒前
Orange应助葡萄芒果蜜柚采纳,获得10
8秒前
天天快乐应助柯不正采纳,获得10
9秒前
lbx完成签到,获得积分10
9秒前
慕青应助AAA采纳,获得10
10秒前
小雨点完成签到,获得积分10
10秒前
11秒前
潘fujun发布了新的文献求助10
11秒前
Magic麦发布了新的文献求助30
12秒前
你学习了吗我学不了一点完成签到,获得积分10
12秒前
暴躁的香旋完成签到,获得积分10
13秒前
情怀应助xiaojie2024采纳,获得10
14秒前
14秒前
南风发布了新的文献求助18
15秒前
浮游应助张传明采纳,获得10
15秒前
16秒前
高乾飞完成签到,获得积分10
16秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397679
求助须知:如何正确求助?哪些是违规求助? 4517650
关于积分的说明 14065175
捐赠科研通 4429664
什么是DOI,文献DOI怎么找? 2432471
邀请新用户注册赠送积分活动 1424965
关于科研通互助平台的介绍 1404052