Slope multi-step excavation displacement prediction surrogate model based on a long short-term memory neural network: for small sample data and multi-feature multi-task learning

人工神经网络 流离失所(心理学) 期限(时间) 样品(材料) 短时记忆 特征(语言学) 计算机科学 任务(项目管理) 人工智能 机器学习 循环神经网络 工程类 心理学 物理 量子力学 哲学 化学 色谱法 系统工程 心理治疗师 语言学
作者
Yue Dai,Wujiao Dai,Jiawei Xie
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Taylor & Francis]
卷期号:: 1-20
标识
DOI:10.1080/17499518.2024.2356543
摘要

Machine learning-based surrogate models have become the preferred approach for large-scale and frequent simulation tasks due to its significant improvement in computational efficiency. In order to overcome the potential effects of learning with small sample data and the challenges of multi-feature multi-task learning, we developed a novel deep learning long short-term memory (LSTM) model. Taking slope excavation displacement prediction as a case study, we employed the Latin hypercube sampling method to generate a synthetic dataset for training LSTM and other mainstream models. Experimental results demonstrate that the model's prediction accuracy decreases with a reduction in sample size, while support vector regression (SVR), back propagation neural network (BPNN), LSTM and Gaussian process regression (GPR) demonstrate a stronger resistance. It is feasible to utilise excavation features as model inputs to establish a unified multi-step excavation model, but the accuracy of the SVR model decreased by 32.5% after supplementing excavation features. Even when the sample size is less than 50, both LSTM and GPR exhibit excellent performance, achieving model R-squared and RMSE surpassing 0.99 and 0.07 mm. However, when addressing multi-output learning tasks, LSTM stands out as the optimal choice. This study will assist researchers or engineers in swiftly selecting appropriate surrogate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助南风采纳,获得10
1秒前
1秒前
今后应助Beginner采纳,获得10
2秒前
2秒前
嗯嗯发布了新的文献求助10
2秒前
华天九四发布了新的文献求助10
3秒前
材1发布了新的文献求助20
3秒前
褚忆灵发布了新的文献求助10
3秒前
3秒前
4秒前
贲半梦发布了新的文献求助10
4秒前
4秒前
舒服的井完成签到,获得积分10
5秒前
晚灯完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
漂流的云朵完成签到,获得积分10
7秒前
霍骁发布了新的文献求助10
7秒前
顺利发布了新的文献求助10
7秒前
W~舞发布了新的文献求助10
7秒前
yui应助852采纳,获得10
8秒前
8秒前
zzz关注了科研通微信公众号
8秒前
water应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得30
9秒前
9秒前
鸣笛应助科研通管家采纳,获得50
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
牧海冬发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203