🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal day-ahead offering strategy for large producers based on market price response learning

计算机科学 农业科学 业务 经济 微观经济学 环境科学
作者
António Alcántara,Carlos Ruiz
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:319 (3): 891-907 被引量:2
标识
DOI:10.1016/j.ejor.2024.06.038
摘要

In day-ahead electricity markets based on uniform marginal pricing, small variations in the offering and bidding curves may substantially modify the resulting market outcomes.In this work, we deal with the problem of finding the optimal offering curve for a risk-averse profit-maximizing generating company (GENCO) in a data-driven context.In particular, a large GENCO's market share may imply that her offering strategy can alter the marginal price formation, which can be used to increase profit.We tackle this problem from a novel perspective.First, we propose an optimization-based methodology to summarize each GENCO's step-wise supply curves into a subset of representative price-energy blocks.Then, the relationship between the resulting market price and the energy block offering prices is modeled through a probabilistic forecasting tool: a Distributional Neural Network, which also allows us to generate stochastic scenarios for the sensibility of the market towards the GENCO strategy via a set of linear constraints.Finally, this predictive model is embedded in the stochastic optimization model employing a constraint learning approach.Results show how allowing the GENCO to deviate from her true marginal costs renders significant changes in her profits and the marginal price of the market.Additionally, these results have also been tested in an out-of-sample validation setting, showing how this optimal offering strategy is effective in a real-world market contest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kehe!完成签到 ,获得积分0
7秒前
李友健完成签到 ,获得积分10
23秒前
鳗鱼厉发布了新的文献求助10
40秒前
58秒前
彭于晏应助花凉采纳,获得10
1分钟前
Ffpcjwcx发布了新的文献求助30
1分钟前
大模型应助Ffpcjwcx采纳,获得10
1分钟前
Ffpcjwcx完成签到,获得积分10
1分钟前
栗li完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
快飞飞完成签到 ,获得积分10
1分钟前
Hello应助毓雅采纳,获得10
1分钟前
FashionBoy应助kevin采纳,获得10
1分钟前
谨慎颜演完成签到 ,获得积分10
2分钟前
2分钟前
重中之重发布了新的文献求助10
2分钟前
2分钟前
2分钟前
毓雅发布了新的文献求助10
2分钟前
2分钟前
酷酷曼彤完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
yo一天完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
ww发布了新的文献求助10
3分钟前
小透明应助科研通管家采纳,获得10
3分钟前
3分钟前
Ffpcjwcx发布了新的文献求助10
3分钟前
LSL丶完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
花凉发布了新的文献求助10
4分钟前
科研搬运工完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600411
求助须知:如何正确求助?哪些是违规求助? 3169262
关于积分的说明 9560699
捐赠科研通 2875632
什么是DOI,文献DOI怎么找? 1578969
邀请新用户注册赠送积分活动 742322
科研通“疑难数据库(出版商)”最低求助积分说明 725161