A novel structure adaptive discrete grey Bernoulli model and its application in renewable energy power generation prediction

计算机科学 伯努利原理 可再生能源 功率(物理) 风力发电 能量(信号处理) 数学优化 人工智能 数学 电气工程 统计 物理 量子力学 工程类 航空航天工程
作者
Yong Wang,Rui Yang,Lang Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124481-124481 被引量:3
标识
DOI:10.1016/j.eswa.2024.124481
摘要

Currently, the renewable energy power generation industry has entered a new stage, and accurate renewable energy power generation prediction is of great significance for the strategic planning of energy systems. However, renewable energy power generation data is characterized by nonlinearity and poor information, which brings challenges to accurately predict its development trend. Thus, this paper proposes a novel discrete grey Bernoulli model based on the spiral structure accumulated generating operator to deal with this problem. The spiral structure accumulated generating operator is introduced into the grey model to realize the effective utilization of renewable energy data information. Meanwhile, with the introduction of time delay structure, periodic structure and Bernoulli structure, the novel model can effectively characterize the nonlinearity, volatility, and time lag information between economic growth and energy development of renewable energy data. In addition, using the Differential Evolution optimization (DE) algorithm for nonlinear parameter optimization can effectively improve the stability and accuracy of the model, and also makes the model have the ability of structural self-adaptation. Finally, the new model was used to predict the bioenergy and wind power generation data. Based on comparative experiments and grey correlation analysis, the predictive performance of the novel model is verified, and the prediction results are highly correlated with those of authoritative organization. The experimental results show that the novel model is an effective predictive tool for renewable energy generation, which is an important reference value for energy development decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助过氧化氢采纳,获得30
3秒前
3秒前
锦鲤完成签到 ,获得积分10
4秒前
任性的白玉完成签到 ,获得积分10
4秒前
youwenjing11发布了新的文献求助10
5秒前
山谷完成签到 ,获得积分10
5秒前
钱宇成发布了新的文献求助10
6秒前
科研通AI2S应助感动黄豆采纳,获得10
10秒前
14秒前
15秒前
18秒前
Fengliguantou发布了新的文献求助10
18秒前
猪猪hero发布了新的文献求助10
20秒前
Winner发布了新的文献求助10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得30
23秒前
23秒前
圆锥香蕉应助科研通管家采纳,获得20
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
24秒前
24秒前
感动黄豆发布了新的文献求助10
24秒前
27秒前
搞怪冷风完成签到,获得积分10
28秒前
lucky完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
31秒前
科目三应助战斗暴龙兽采纳,获得10
35秒前
35秒前
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105