A novel structure adaptive discrete grey Bernoulli model and its application in renewable energy power generation prediction

计算机科学 伯努利原理 可再生能源 功率(物理) 风力发电 能量(信号处理) 数学优化 人工智能 数学 电气工程 统计 量子力学 物理 工程类 航空航天工程
作者
Yong Wang,Rui Yang,Lang Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124481-124481 被引量:13
标识
DOI:10.1016/j.eswa.2024.124481
摘要

Currently, the renewable energy power generation industry has entered a new stage, and accurate renewable energy power generation prediction is of great significance for the strategic planning of energy systems. However, renewable energy power generation data is characterized by nonlinearity and poor information, which brings challenges to accurately predict its development trend. Thus, this paper proposes a novel discrete grey Bernoulli model based on the spiral structure accumulated generating operator to deal with this problem. The spiral structure accumulated generating operator is introduced into the grey model to realize the effective utilization of renewable energy data information. Meanwhile, with the introduction of time delay structure, periodic structure and Bernoulli structure, the novel model can effectively characterize the nonlinearity, volatility, and time lag information between economic growth and energy development of renewable energy data. In addition, using the Differential Evolution optimization (DE) algorithm for nonlinear parameter optimization can effectively improve the stability and accuracy of the model, and also makes the model have the ability of structural self-adaptation. Finally, the new model was used to predict the bioenergy and wind power generation data. Based on comparative experiments and grey correlation analysis, the predictive performance of the novel model is verified, and the prediction results are highly correlated with those of authoritative organization. The experimental results show that the novel model is an effective predictive tool for renewable energy generation, which is an important reference value for energy development decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴完成签到,获得积分20
刚刚
1秒前
七安发布了新的文献求助30
1秒前
LeePsy完成签到,获得积分10
1秒前
2秒前
深情安青应助hbutsj采纳,获得10
2秒前
小璐璐呀完成签到,获得积分10
3秒前
明亮安双完成签到,获得积分20
4秒前
Lemon完成签到,获得积分10
4秒前
sci一区作者完成签到,获得积分20
5秒前
包容柜子发布了新的文献求助10
5秒前
hhllhh发布了新的文献求助10
6秒前
河丫应助阳洋洋采纳,获得10
6秒前
6秒前
落霞与孤鹜齐飞完成签到,获得积分10
7秒前
7秒前
7秒前
hbuhfl完成签到,获得积分10
8秒前
小瑜完成签到,获得积分10
9秒前
小蘑菇应助Lemon采纳,获得10
9秒前
betty2009完成签到,获得积分10
9秒前
星星完成签到,获得积分10
9秒前
乐观如松关注了科研通微信公众号
9秒前
10秒前
Leo发布了新的文献求助20
11秒前
11秒前
幸运星完成签到,获得积分10
11秒前
包容柜子完成签到,获得积分10
12秒前
马某发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
丞123完成签到,获得积分10
12秒前
花开的石头完成签到,获得积分10
13秒前
向秋完成签到,获得积分10
13秒前
刘聪聪发布了新的文献求助10
13秒前
wanci应助树下采纳,获得10
14秒前
14秒前
clm完成签到 ,获得积分10
14秒前
14秒前
14秒前
桐桐应助幸运鱼采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029