A novel structure adaptive discrete grey Bernoulli model and its application in renewable energy power generation prediction

计算机科学 伯努利原理 可再生能源 功率(物理) 风力发电 能量(信号处理) 数学优化 人工智能 数学 电气工程 统计 量子力学 物理 工程类 航空航天工程
作者
Yong Wang,Rui Yang,Lang Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124481-124481 被引量:13
标识
DOI:10.1016/j.eswa.2024.124481
摘要

Currently, the renewable energy power generation industry has entered a new stage, and accurate renewable energy power generation prediction is of great significance for the strategic planning of energy systems. However, renewable energy power generation data is characterized by nonlinearity and poor information, which brings challenges to accurately predict its development trend. Thus, this paper proposes a novel discrete grey Bernoulli model based on the spiral structure accumulated generating operator to deal with this problem. The spiral structure accumulated generating operator is introduced into the grey model to realize the effective utilization of renewable energy data information. Meanwhile, with the introduction of time delay structure, periodic structure and Bernoulli structure, the novel model can effectively characterize the nonlinearity, volatility, and time lag information between economic growth and energy development of renewable energy data. In addition, using the Differential Evolution optimization (DE) algorithm for nonlinear parameter optimization can effectively improve the stability and accuracy of the model, and also makes the model have the ability of structural self-adaptation. Finally, the new model was used to predict the bioenergy and wind power generation data. Based on comparative experiments and grey correlation analysis, the predictive performance of the novel model is verified, and the prediction results are highly correlated with those of authoritative organization. The experimental results show that the novel model is an effective predictive tool for renewable energy generation, which is an important reference value for energy development decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静静在学呢完成签到,获得积分10
1秒前
1秒前
HHW完成签到,获得积分10
3秒前
加油杨完成签到 ,获得积分10
4秒前
111完成签到 ,获得积分10
4秒前
5秒前
AE86完成签到,获得积分10
7秒前
CC_Galaxy完成签到 ,获得积分10
7秒前
jeffrey完成签到,获得积分0
7秒前
郭帅完成签到,获得积分10
10秒前
香蕉海白发布了新的文献求助10
10秒前
看满天星河完成签到 ,获得积分10
12秒前
郑振哲完成签到 ,获得积分10
18秒前
笑林完成签到 ,获得积分10
19秒前
求知小生完成签到 ,获得积分10
21秒前
29秒前
31秒前
LiuZhaoYuan完成签到,获得积分10
35秒前
36秒前
杨一完成签到 ,获得积分0
37秒前
三木完成签到 ,获得积分10
37秒前
一米阳光发布了新的文献求助10
38秒前
舒心的雍发布了新的文献求助10
40秒前
glanceofwind完成签到 ,获得积分10
41秒前
我世界第一快应助EMMA采纳,获得20
41秒前
典雅思真完成签到 ,获得积分10
43秒前
Ziang发布了新的文献求助10
46秒前
宇文雨文完成签到 ,获得积分10
51秒前
51秒前
舒心的雍完成签到,获得积分10
53秒前
benlaron完成签到 ,获得积分10
53秒前
贤惠的早晨完成签到 ,获得积分10
55秒前
56秒前
Karl完成签到,获得积分10
57秒前
1分钟前
1分钟前
小蘑菇应助一米阳光采纳,获得10
1分钟前
wanci应助Zoro采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866612
求助须知:如何正确求助?哪些是违规求助? 6424931
关于积分的说明 15654690
捐赠科研通 4981530
什么是DOI,文献DOI怎么找? 2686673
邀请新用户注册赠送积分活动 1629485
关于科研通互助平台的介绍 1587488