Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation from Invasive Coronary Imaging

部分流量储备 拉回 人工智能 计算机科学 合成数据 机器学习 算法 数学 医学 心脏病学 几何学 冠状动脉造影 心肌梗塞
作者
Dong Zhang,Xiujian Liu,Anbang Wang,Hong-Wei Zhang,Guang Yang,Heye Zhang,Zhifan Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3412935
摘要

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CatherineRR完成签到 ,获得积分10
2秒前
3秒前
ataybabdallah完成签到,获得积分20
3秒前
晓舟完成签到,获得积分10
3秒前
3秒前
小黄人完成签到,获得积分10
5秒前
嘿嘿完成签到,获得积分10
5秒前
多多就是小豆芽完成签到 ,获得积分20
6秒前
Diamond发布了新的文献求助10
6秒前
喜悦恶天发布了新的文献求助10
7秒前
研友_LN23OL发布了新的文献求助30
7秒前
小王爱喝可乐完成签到,获得积分20
7秒前
啊建发布了新的文献求助10
7秒前
7秒前
8秒前
cassie发布了新的文献求助10
9秒前
Lee完成签到,获得积分10
10秒前
Akim应助受伤的豌豆采纳,获得10
10秒前
军歌嘹亮完成签到,获得积分10
10秒前
11秒前
Akim应助啊建采纳,获得10
12秒前
没有逗完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
江湖笑完成签到,获得积分20
14秒前
白芝麻糊完成签到 ,获得积分10
15秒前
李科生完成签到,获得积分20
15秒前
yajing完成签到,获得积分10
16秒前
CodeCraft应助喜悦恶天采纳,获得10
19秒前
dsaifjs发布了新的文献求助10
20秒前
wrr完成签到,获得积分10
22秒前
23秒前
小鹤关注了科研通微信公众号
25秒前
科研通AI2S应助lisa采纳,获得10
26秒前
霜降完成签到 ,获得积分10
26秒前
ananla发布了新的文献求助10
27秒前
稳重的蜜蜂完成签到,获得积分10
28秒前
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244