Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation From Invasive Coronary Imaging

部分流量储备 拉回 人工智能 计算机科学 合成数据 机器学习 算法 数学 医学 心脏病学 几何学 冠状动脉造影 心肌梗塞
作者
Dong Zhang,Xiujian Liu,Anbang Wang,Hong-Wei Zhang,Guang Yang,Heye Zhang,Zhifan Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (12): 4091-4104 被引量:7
标识
DOI:10.1109/tmi.2024.3412935
摘要

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds完成签到,获得积分0
刚刚
英俊的铭应助nong12123采纳,获得10
1秒前
2秒前
3秒前
菠萝完成签到 ,获得积分10
3秒前
lj发布了新的文献求助10
4秒前
852应助高大的曼寒采纳,获得10
4秒前
4秒前
5秒前
灵巧的小笼包完成签到,获得积分10
5秒前
自行车完成签到,获得积分10
7秒前
ding应助老迟到的信封采纳,获得10
7秒前
刘述发布了新的文献求助10
7秒前
7秒前
慕青应助无限的依凝采纳,获得10
8秒前
9秒前
9秒前
荔枝发布了新的文献求助10
10秒前
10秒前
如意冥茗完成签到 ,获得积分10
10秒前
10秒前
躺平的洋仔完成签到,获得积分10
11秒前
田様应助ying采纳,获得10
12秒前
12秒前
合适苗条发布了新的文献求助10
12秒前
Jared应助Singhi采纳,获得10
13秒前
思源应助obsession采纳,获得10
13秒前
墨客发布了新的文献求助10
13秒前
qsh关闭了qsh文献求助
13秒前
阔达的冷霜完成签到,获得积分10
14秒前
14秒前
Hello应助YYH采纳,获得10
14秒前
心斋完成签到,获得积分10
14秒前
15秒前
科研通AI6应助122采纳,获得10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇应助二橦采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218