Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation From Invasive Coronary Imaging

部分流量储备 拉回 人工智能 计算机科学 合成数据 机器学习 算法 数学 医学 心脏病学 几何学 冠状动脉造影 心肌梗塞
作者
Dong Zhang,Xiujian Liu,Anbang Wang,Hong-Wei Zhang,Guang Yang,Heye Zhang,Zhifan Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (12): 4091-4104 被引量:7
标识
DOI:10.1109/tmi.2024.3412935
摘要

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lareina完成签到,获得积分10
1秒前
3秒前
Hello应助kyouu采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
SciGPT应助高贵秋柳采纳,获得10
7秒前
钙离子发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
小王很忙发布了新的文献求助10
10秒前
11秒前
11秒前
栗栗发布了新的文献求助10
12秒前
高贵秋柳完成签到,获得积分10
12秒前
12秒前
zhong完成签到,获得积分10
13秒前
亦犹未进发布了新的文献求助10
13秒前
丰富胡萝卜完成签到,获得积分20
13秒前
小马甲应助阔达的双双采纳,获得10
13秒前
连仁兄发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
15秒前
李爱国应助amin采纳,获得10
15秒前
zpy完成签到,获得积分10
15秒前
风筝有风发布了新的文献求助10
16秒前
高贵秋柳发布了新的文献求助10
17秒前
17秒前
18秒前
雨眠发布了新的文献求助10
19秒前
曹紫微完成签到,获得积分10
19秒前
Orange应助ddnishi采纳,获得10
19秒前
等乙天发布了新的文献求助10
20秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300