Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation from Invasive Coronary Imaging

部分流量储备 拉回 人工智能 计算机科学 合成数据 机器学习 算法 数学 医学 心脏病学 几何学 冠状动脉造影 心肌梗塞
作者
Dong Zhang,Xiujian Liu,Anbang Wang,Hong-Wei Zhang,Guang Yang,Heye Zhang,Zhifan Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3412935
摘要

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lplplp发布了新的文献求助10
1秒前
1秒前
王博士发布了新的文献求助30
2秒前
2秒前
sjsjjj发布了新的文献求助10
2秒前
hhhhhheeeeee发布了新的文献求助20
3秒前
shijin发布了新的文献求助10
3秒前
诚心巧凡完成签到 ,获得积分20
3秒前
淡定美女完成签到 ,获得积分10
4秒前
典雅冰香发布了新的文献求助10
5秒前
LXJY发布了新的文献求助10
6秒前
星辰大海应助何海采纳,获得10
7秒前
8R60d8应助杨洋采纳,获得20
7秒前
7秒前
行歌发布了新的文献求助10
7秒前
wind完成签到,获得积分10
8秒前
liang完成签到,获得积分10
8秒前
记得吃早饭完成签到 ,获得积分10
9秒前
坤坤发布了新的文献求助10
12秒前
wind发布了新的文献求助10
12秒前
13秒前
Azed完成签到,获得积分20
13秒前
14秒前
14秒前
行歌完成签到,获得积分10
15秒前
hhhhhheeeeee完成签到,获得积分10
15秒前
wanci应助yixuan采纳,获得10
17秒前
liang发布了新的文献求助10
17秒前
17秒前
星辰完成签到,获得积分10
17秒前
小盛完成签到 ,获得积分10
18秒前
Gasoline.发布了新的文献求助10
18秒前
科研通AI6应助风中垣采纳,获得10
19秒前
19秒前
路见不平发布了新的文献求助10
20秒前
优秀静珊发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
路漫漫123完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252271
求助须知:如何正确求助?哪些是违规求助? 4416124
关于积分的说明 13748660
捐赠科研通 4288014
什么是DOI,文献DOI怎么找? 2352722
邀请新用户注册赠送积分活动 1349497
关于科研通互助平台的介绍 1309009