Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation from Invasive Coronary Imaging

部分流量储备 拉回 人工智能 计算机科学 合成数据 机器学习 算法 数学 医学 心脏病学 几何学 冠状动脉造影 心肌梗塞
作者
Dong Zhang,Xiujian Liu,Anbang Wang,Hong-Wei Zhang,Guang Yang,Heye Zhang,Zhifan Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3412935
摘要

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日新给日新的求助进行了留言
1秒前
许洋完成签到,获得积分10
1秒前
核桃应助kd采纳,获得10
1秒前
柒月完成签到,获得积分10
2秒前
ZQ发布了新的文献求助60
3秒前
3秒前
4秒前
nice1025完成签到,获得积分10
5秒前
6秒前
6秒前
zhang完成签到,获得积分10
7秒前
xue发布了新的文献求助10
9秒前
丘比特应助朴实的秋采纳,获得10
9秒前
一一发布了新的文献求助10
9秒前
doctorlee发布了新的文献求助10
10秒前
10秒前
虚心求学完成签到,获得积分10
10秒前
冰冰完成签到,获得积分10
10秒前
Guochunbao发布了新的文献求助10
11秒前
leiye完成签到,获得积分10
12秒前
苗条的紫文完成签到,获得积分10
13秒前
典雅的曼冬完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助50
14秒前
14秒前
Sunbrust完成签到 ,获得积分10
14秒前
wang发布了新的文献求助10
15秒前
15秒前
FashionBoy应助宋祝福采纳,获得10
15秒前
16秒前
酷波er应助Spring采纳,获得10
16秒前
昕昕233完成签到,获得积分10
16秒前
科研通AI5应助doctorlee采纳,获得10
18秒前
19秒前
任风完成签到,获得积分10
19秒前
朴实的秋发布了新的文献求助10
20秒前
x123发布了新的文献求助10
20秒前
20秒前
xiaoai完成签到 ,获得积分10
21秒前
合适的老五完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924651
求助须知:如何正确求助?哪些是违规求助? 4194786
关于积分的说明 13029440
捐赠科研通 3966541
什么是DOI,文献DOI怎么找? 2174023
邀请新用户注册赠送积分活动 1191544
关于科研通互助平台的介绍 1101059