Enhancing Cross-Dataset Performance of Distracted Driving Detection With Score Softmax Classifier and Dynamic Gaussian Smoothing Supervision

Softmax函数 过度拟合 平滑的 计算机科学 分类器(UML) 机器学习 人工神经网络 人工智能 高斯分布 模式识别(心理学) 计算机视觉 量子力学 物理
作者
Cong Duan,Zixuan Liu,Jiahao Xia,Minghai Zhang,Jiacai Liao,Libo Cao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 282-295 被引量:2
标识
DOI:10.1109/tiv.2024.3412198
摘要

Deep neural networks enable real-time monitoring of in-vehicle driver, facilitating the timely prediction of distractions, fatigue, and potential hazards.This technology is now integral to intelligent transportation systems.Recent research has exposed unreliable cross-dataset end-to-end driver behavior recognition due to overfitting, often referred to as "shortcut learning", resulting from limited data samples.In this paper, we introduce the Score-Softmax classifier, which addresses this issue by enhancing inter-class independence and Intra-class uncertainty.Motivated by human rating patterns, we designed a two-dimensional supervisory matrix based on marginal Gaussian distributions to train the classifier.Gaussian distributions help amplify intra-class uncertainty while ensuring the Score-Softmax classifier learns accurate knowledge.Furthermore, leveraging the summation of independent Gaussian distributed random variables, we introduced a multi-channel information fusion method.This strategy effectively resolves the multi-information fusion challenge for the Score-Softmax classifier.Concurrently, we substantiate the necessity of transfer learning and multidataset combination.We conducted cross-dataset experiments using the SFD, AUCDD-V1, and 100-Driver datasets, demonstrating that Score-Softmax improves cross-dataset performance without modifying the model architecture.This provides a new approach for enhancing neural network generalization.Additionally, our information fusion approach outperforms traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
思源应助科研通管家采纳,获得30
刚刚
852应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得30
1秒前
Kevin完成签到,获得积分10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
wanci应助小城故事和冰雨采纳,获得10
1秒前
1秒前
Angel完成签到,获得积分10
1秒前
小青椒应助科研通管家采纳,获得30
1秒前
CodeCraft应助科研通管家采纳,获得50
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
是莉莉娅完成签到,获得积分10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
田様应助卫绯采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
懵懂的采梦应助婷婷采纳,获得10
2秒前
彭星星完成签到,获得积分10
2秒前
2秒前
2秒前
zxy完成签到,获得积分10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
cly发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得50
2秒前
李健应助科研通管家采纳,获得10
2秒前
Dream发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313