Enhancing Cross-Dataset Performance of Distracted Driving Detection With Score Softmax Classifier and Dynamic Gaussian Smoothing Supervision

Softmax函数 过度拟合 平滑的 计算机科学 分类器(UML) 机器学习 人工神经网络 人工智能 高斯分布 模式识别(心理学) 计算机视觉 量子力学 物理
作者
Cong Duan,Zixuan Liu,Jiahao Xia,Minghai Zhang,Jiacai Liao,Libo Cao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 282-295 被引量:2
标识
DOI:10.1109/tiv.2024.3412198
摘要

Deep neural networks enable real-time monitoring of in-vehicle driver, facilitating the timely prediction of distractions, fatigue, and potential hazards.This technology is now integral to intelligent transportation systems.Recent research has exposed unreliable cross-dataset end-to-end driver behavior recognition due to overfitting, often referred to as "shortcut learning", resulting from limited data samples.In this paper, we introduce the Score-Softmax classifier, which addresses this issue by enhancing inter-class independence and Intra-class uncertainty.Motivated by human rating patterns, we designed a two-dimensional supervisory matrix based on marginal Gaussian distributions to train the classifier.Gaussian distributions help amplify intra-class uncertainty while ensuring the Score-Softmax classifier learns accurate knowledge.Furthermore, leveraging the summation of independent Gaussian distributed random variables, we introduced a multi-channel information fusion method.This strategy effectively resolves the multi-information fusion challenge for the Score-Softmax classifier.Concurrently, we substantiate the necessity of transfer learning and multidataset combination.We conducted cross-dataset experiments using the SFD, AUCDD-V1, and 100-Driver datasets, demonstrating that Score-Softmax improves cross-dataset performance without modifying the model architecture.This provides a new approach for enhancing neural network generalization.Additionally, our information fusion approach outperforms traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搞怪南烟发布了新的文献求助30
刚刚
仔仔发布了新的文献求助10
刚刚
刚刚
Jasper应助香蕉梨愁采纳,获得10
1秒前
无情干饭崽完成签到,获得积分10
1秒前
慕青应助笨笨采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助20
2秒前
852应助傲慢与偏见zz采纳,获得10
2秒前
学姐完成签到,获得积分10
2秒前
2秒前
3秒前
刘培培发布了新的文献求助10
3秒前
势不可挡发布了新的文献求助10
3秒前
1111应助zfm采纳,获得10
3秒前
3秒前
3秒前
领导范儿应助小皮艇采纳,获得10
4秒前
陌上花开完成签到,获得积分0
4秒前
4秒前
5秒前
yellow发布了新的文献求助10
5秒前
妮妮发布了新的文献求助10
5秒前
SciGPT应助李欣聪采纳,获得10
5秒前
Alily完成签到,获得积分10
5秒前
6秒前
6秒前
可爱的函函应助斌城采纳,获得10
6秒前
6秒前
7秒前
靓丽幻梅发布了新的文献求助10
7秒前
dalin发布了新的文献求助100
7秒前
孟龙威发布了新的文献求助10
7秒前
隐形曼青应助虚幻的青槐采纳,获得10
7秒前
王羲之发布了新的文献求助10
7秒前
hyy发布了新的文献求助10
8秒前
科目三应助eee采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949