Room temperature detection of aspergillus flavus volatile organic compounds (VOCs) under simulated conditions using graphene oxide and tin oxide Nanorods (SnO2 NRs-GO)

石墨烯 纳米棒 氧化物 氧化锡 黄曲霉 材料科学 化学工程 纳米技术 化学 冶金 食品科学 工程类
作者
Viola O. Okechukwu,Patrick Berka Njobeh,Abidemi Paul Kappo,Messai A. Mamo
出处
期刊:Food Chemistry [Elsevier]
卷期号:456: 140068-140068
标识
DOI:10.1016/j.foodchem.2024.140068
摘要

This study investigated the application of a hybrid nanocomposite of tin oxide nanorods (SnO2 NRs) and graphene oxide (GO) for the chemoresistive detection of some volatile compounds (hexanal, benzaldehyde, octanal, 1-octanol, and ethyl acetate vapours) emitted by Aspergillus flavus under simulated conditions. The synthesised materials were characterised using various analytical techniques, including high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Three sensors were fabricated: individual nanomaterials (i.e., SnO2 and GO) and composites (SnO2-GO). The results showed that SnO2 NRs had limited sensitivity as a sensor, while GO-based sensors responded to various analyte vapours. However, the incorporation of SnO2 NRs into GO layers resulted in synergistic effects and improved sensor performance. The sensors' sensitivity, selectivity, recovery, and response times were quantitatively determined from the sensors' response curves. The nanocomposite sensor demonstrated superior sensitivity and selectivity for analyte vapours with acceptable response and recovery times. In addition, the sensor was insensitive to humidity and showed robust performance up to 62% RH, although sensor drift occurred at 70% RH. This study highlights the promising potential of using SnO2 NRs-GO composite-based sensor for sensitive and selective detection of analyte vapours, which has significant implications for food safety and environmental monitoring applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助晨丶采纳,获得10
刚刚
1秒前
1秒前
1秒前
大模型应助lili采纳,获得10
2秒前
3秒前
Joy完成签到 ,获得积分10
4秒前
4秒前
5秒前
。。。发布了新的文献求助10
5秒前
蛋黄派完成签到,获得积分10
6秒前
6秒前
7秒前
善学以致用应助王的故乡采纳,获得10
7秒前
现代的研发布了新的文献求助10
9秒前
kk发布了新的文献求助10
11秒前
Ray完成签到 ,获得积分10
12秒前
所所应助诚c采纳,获得10
12秒前
13秒前
14秒前
14秒前
15秒前
17秒前
18秒前
华仔应助鸭子采纳,获得10
18秒前
王的故乡发布了新的文献求助10
18秒前
20秒前
20秒前
Vesper完成签到,获得积分10
20秒前
lalala发布了新的文献求助10
20秒前
21秒前
Reese完成签到 ,获得积分10
21秒前
21秒前
慕青应助滴答滴答滴采纳,获得10
22秒前
菜菜发布了新的文献求助10
23秒前
可乐发布了新的文献求助10
24秒前
健忘英姑给落寞的无施的求助进行了留言
25秒前
25秒前
诚c发布了新的文献求助10
25秒前
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157630
求助须知:如何正确求助?哪些是违规求助? 2808948
关于积分的说明 7879413
捐赠科研通 2467414
什么是DOI,文献DOI怎么找? 1313449
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919