亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tripartite Feature Enhanced Pyramid Network for Dense Prediction

棱锥(几何) 特征(语言学) 计算机科学 人工智能 特征提取 图像处理 模式识别(心理学) 计算机视觉 图像(数学) 数学 几何学 语言学 哲学
作者
Dongfang Liu,James Liang,Tony Geng,Alexander C. Loui,Tianfei Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2678-2692 被引量:58
标识
DOI:10.1109/tip.2023.3272826
摘要

Learning pyramidal feature representations is important for many dense prediction tasks (e.g., object detection, semantic segmentation) that demand multi-scale visual understanding. Feature Pyramid Network (FPN) is a well-known architecture for multi-scale feature learning, however, intrinsic weaknesses in feature extraction and fusion impede the production of informative features. This work addresses the weaknesses of FPN through a novel tripartite feature enhanced pyramid network (TFPN), with three distinct and effective designs. First, we develop a feature reference module with lateral connections to adaptively extract bottom-up features with richer details for feature pyramid construction. Second, we design a feature calibration module between adjacent layers that calibrates the upsampled features to be spatially aligned, allowing for feature fusion with accurate correspondences. Third, we introduce a feature feedback module in FPN, which creates a communication channel from the feature pyramid back to the bottom-up backbone and doubles the encoding capacity, enabling the entire architecture to generate incrementally more powerful representations. The TFPN is extensively evaluated over four popular dense prediction tasks, i.e., object detection, instance segmentation, panoptic segmentation, and semantic segmentation. The results demonstrate that TFPN consistently and significantly outperforms the vanilla FPN. Our code is available at https://github.com/jamesliang819.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以won发布了新的文献求助10
1秒前
Orange应助摆烂ing采纳,获得10
1秒前
9秒前
13秒前
摆烂ing完成签到,获得积分10
14秒前
Yantuobio完成签到,获得积分10
40秒前
畅快甜瓜发布了新的文献求助10
42秒前
满意的伊完成签到,获得积分10
42秒前
年鱼精完成签到 ,获得积分10
44秒前
华仔应助读书的时候采纳,获得10
46秒前
50秒前
懵懂的莛完成签到,获得积分10
51秒前
yydd发布了新的文献求助10
57秒前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
1分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
SciGPT应助信陵君无忌采纳,获得10
2分钟前
2分钟前
yx完成签到,获得积分10
2分钟前
机智元珊完成签到,获得积分10
2分钟前
ding应助畅快甜瓜采纳,获得10
3分钟前
狐尾完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352