Tripartite Feature Enhanced Pyramid Network for Dense Prediction

棱锥(几何) 特征(语言学) 计算机科学 人工智能 特征提取 模式识别(心理学) 数学 几何学 语言学 哲学
作者
Dongfang Liu,James Liang,Tong Geng,Alexander C. Loui,Tianfei Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2678-2692 被引量:26
标识
DOI:10.1109/tip.2023.3272826
摘要

Learning pyramidal feature representations is important for many dense prediction tasks ( e.g ., object detection, semantic segmentation) that demand multi-scale visual understanding. Feature Pyramid Network (FPN) is a well-known architecture for multi-scale feature learning, however, intrinsic weaknesses in feature extraction and fusion impede the production of informative features. This work addresses the weaknesses of FPN through a novel tripartite feature enhanced pyramid network (TFPN), with three distinct and effective designs. First, we develop a feature reference module with lateral connections to adaptively extract bottom-up features with richer details for feature pyramid construction. Second, we design a feature calibration module between adjacent layers that calibrates the upsampled features to be spatially aligned, allowing for feature fusion with accurate correspondences. Third, we introduce a feature feedback module in FPN, which creates a communication channel from the feature pyramid back to the bottom-up backbone and doubles the encoding capacity, enabling the entire architecture to generate incrementally more powerful representations. The TFPN is extensively evaluated over four popular dense prediction tasks, i.e ., object detection, instance segmentation, panoptic segmentation, and semantic segmentation. The results demonstrate that TFPN consistently and significantly outperforms the vanilla FPN. Our code is available at https://github.com/jamesliang819.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助刻苦的白梅采纳,获得10
1秒前
悠悠完成签到,获得积分10
1秒前
Owen应助潮湿小兰花采纳,获得10
2秒前
小蘑菇应助靴子采纳,获得10
2秒前
峰1992完成签到,获得积分20
3秒前
4秒前
easy scholar发布了新的文献求助10
4秒前
4秒前
5秒前
FantasyGud发布了新的文献求助10
6秒前
11655165发布了新的文献求助10
7秒前
8秒前
9秒前
gxm1234567发布了新的文献求助10
9秒前
shi完成签到,获得积分10
9秒前
9秒前
共享精神应助明亮映阳采纳,获得10
11秒前
乐观梦芝发布了新的文献求助10
12秒前
刻苦的白梅完成签到,获得积分20
12秒前
阿航发布了新的文献求助10
13秒前
脑洞疼应助su采纳,获得10
14秒前
15秒前
15秒前
junsizzz发布了新的文献求助10
15秒前
zxf完成签到,获得积分20
15秒前
Orange应助wwwww采纳,获得10
16秒前
16秒前
17秒前
18秒前
Transient发布了新的文献求助10
19秒前
SUN完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
ferrycake应助科研通管家采纳,获得20
20秒前
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
21秒前
Leif应助科研通管家采纳,获得20
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313969
求助须知:如何正确求助?哪些是违规求助? 2946329
关于积分的说明 8529696
捐赠科研通 2621983
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774