Intelligent proximal-policy-optimization-based decision-making system for humanoid robots

机器人 人工智能 计算机科学 仿人机器人 任务(项目管理) 步态 障碍物 机器人控制 移动机器人 机器学习 人机交互 工程类 生物 法学 系统工程 生理学 政治学
作者
Ping‐Huan Kuo,Wei-Cyuan Yang,Po-Wei Hsu,Kuan-Lin Chen
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:56: 102009-102009 被引量:3
标识
DOI:10.1016/j.aei.2023.102009
摘要

With the advancements in technology, robots have gradually replaced humans in different aspects. Allowing robots to handle multiple situations simultaneously and perform different actions depending on the situation has since become a critical topic. Currently, training a robot to perform a designated action is considered an easy task. However, when a robot is required to perform actions in different environments, both resetting and retraining are required, which are time-consuming and inefficient. Therefore, allowing robots to autonomously identify their environment can significantly reduce the time consumed. How to employ machine learning algorithms to achieve autonomous robot learning has formed a research trend in current studies. In this study, to solve the aforementioned problem, a proximal policy optimization algorithm was used to allow a robot to conduct self-training and select an optimal gait pattern to reach its destination successfully. Multiple basic gait patterns were selected, and information-maximizing generative adversarial nets were used to generate gait patterns and allow the robot to choose from numerous gait patterns while walking. The experimental results indicated that, after self-learning, the robot successfully made different choices depending on the situation, verifying this approach’s feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助a成采纳,获得10
1秒前
Wsyyy完成签到 ,获得积分10
3秒前
WANGCHU发布了新的文献求助10
4秒前
laity发布了新的文献求助10
5秒前
aa121599发布了新的文献求助10
5秒前
罗翔完成签到,获得积分10
9秒前
laity完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
14秒前
Lin完成签到,获得积分10
17秒前
18秒前
Owen应助现代雪晴采纳,获得10
19秒前
20秒前
20秒前
swby完成签到,获得积分10
21秒前
田様应助wellme采纳,获得10
22秒前
annali完成签到,获得积分10
22秒前
22秒前
岁月静好发布了新的文献求助10
22秒前
852应助小小阿杰采纳,获得10
23秒前
感动忆霜发布了新的文献求助10
24秒前
木子完成签到,获得积分10
24秒前
24秒前
kekerenren发布了新的文献求助10
24秒前
小蘑菇应助ZhangR采纳,获得10
25秒前
annali发布了新的文献求助10
26秒前
26秒前
26秒前
向前完成签到,获得积分10
26秒前
27秒前
俊鱼完成签到,获得积分10
27秒前
28秒前
smart完成签到,获得积分10
28秒前
29秒前
lhyqqt完成签到,获得积分10
29秒前
在水一方应助能干的吐司采纳,获得10
30秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371