Optimization of CNN using modified Honey Badger Algorithm for Sleep Apnea detection

计算机科学 多导睡眠图 卷积神经网络 人工智能 睡眠呼吸暂停 机器学习 超参数 呼吸暂停 模式识别(心理学) 加权 算法 医学 心脏病学 内科学 放射科 生物 生态学
作者
Ammar Kamal Abasi,Moayad Aloqaily,Mohsen Guizani
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:229: 120484-120484 被引量:21
标识
DOI:10.1016/j.eswa.2023.120484
摘要

Sleep Apnea (SA) is the most prevalent breathing sleep problem, and if left untreated, it can lead to catastrophic neurological and cardiovascular illnesses. Conventionally, polysomnography (PSG) is used to diagnose SA. Nonetheless, this approach necessitates several electrodes, cables, and a professional to oversee the experiment. A promising alternative is using a single-channel signal for SA diagnosis, with the electrocardiogram (ECG) signal being among the most relevant and easily recordable. Recently, a convolutional neural network (CNN) has been used to extract efficient features from training data instead of manually selecting characteristics from ECG. However, selecting the best hyperparameter values for CNN can be challenging due to the vast number of possibilities. To address this, we propose a modified Honey Badger Algorithm (MHBA) combined with three improvement initiatives: quasi-opposition learning, arbitrary weighting agent, and adaptive mutation method. Our approach is evaluated on the Physionet Apnea ECG database, consisting of 70 single-lead ECG recordings annotated by qualified medical professionals. The experiments show that the MHBA outperforms traditional CNN and machine learning methods with an accuracy of 91.3%, AUC of 97.5%, specificity of 93.6%, and sensitivity of 90.1%. Our results demonstrate the effectiveness of the MHBA for SA detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马保国123发布了新的文献求助10
1秒前
1秒前
直率尔芙完成签到,获得积分10
1秒前
shenyanlei完成签到,获得积分20
1秒前
尔云发布了新的文献求助20
1秒前
wwuu完成签到,获得积分10
1秒前
1秒前
xiaoxiaomi应助阳光下的星星采纳,获得20
2秒前
爱X7的嘛喽完成签到,获得积分10
2秒前
Louise完成签到,获得积分10
2秒前
2秒前
喜悦中道应助白白采纳,获得10
3秒前
CipherSage应助dong采纳,获得10
4秒前
4秒前
4秒前
zz完成签到 ,获得积分10
4秒前
4秒前
223344完成签到,获得积分10
5秒前
欧阳半仙完成签到,获得积分10
5秒前
6秒前
bkagyin应助xm采纳,获得10
6秒前
赘婿应助gwh68964402gwh采纳,获得10
6秒前
我瞎蒙完成签到,获得积分10
7秒前
yzz发布了新的文献求助10
7秒前
赖道之发布了新的文献求助10
8秒前
熊猫完成签到,获得积分10
8秒前
Yvonne发布了新的文献求助10
9秒前
NANA发布了新的文献求助10
9秒前
yoyocici1505完成签到,获得积分10
9秒前
ding应助平常的擎宇采纳,获得30
10秒前
於松应助Chang采纳,获得20
10秒前
刻苦问柳完成签到,获得积分10
10秒前
呆萌小鸭子完成签到 ,获得积分10
10秒前
白白完成签到,获得积分10
10秒前
Lxy完成签到,获得积分10
10秒前
11秒前
橙子味完成签到 ,获得积分10
11秒前
12秒前
12秒前
dong完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762