Mobile Collaborative Learning Over Opportunistic Internet of Vehicles

计算机科学 利用 车载自组网 上传 计算机网络 互联网 智能交通系统 互联网接入 建筑 车载通信系统 分布式计算 无线 无线自组网 计算机安全 电信 万维网 运输工程 工程类 艺术 视觉艺术
作者
Wenchao Xu,Haozhao Wang,Zhaoyi Lu,Cunqing Hua,Nan Cheng,Song Guo
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 3187-3199 被引量:4
标识
DOI:10.1109/tmc.2023.3273425
摘要

Machine learning models are widely applied for vehicular applications, which are essential to future intelligent transportation system (ITS). Traditional model training methods commonly employ a client-server architecture to perform local training and global iterative aggregations, which can consume significant bandwidth resources that are often absent in vehicular networks, especially in high vehicle density scenarios. Modern vehicle users naturally can collaboratively train machine learning models as they are the data owner and have strong local computing power from the onboard units (OBU). In this paper, we propose a novel collaborative learning scheme for mobile vehicles that can utilize the opportunistic vehicle-to-roadside (V2R) communication to exploit the common priors of vehicular data without interaction with a centralized coordinator. Specifically, vehicles perform local training during the driving journey, and simply upload its local model to roadside unit (RSU) encountered on the way. RSU's model will be updated accordingly and sent back to the vehicle via the V2R communication. We have theoretically shown that RSUs' models can eventually converge without a backhaul connection. Extensive experiments upon various road configurations demonstrate that the proposed scheme can efficiently train models among vehicles without dedicated Internet access and scale well with both the road range and vehicle density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harlotte发布了新的文献求助10
刚刚
刚刚
潦草发布了新的文献求助10
刚刚
丘比特应助Ll采纳,获得10
1秒前
1秒前
yu完成签到 ,获得积分10
1秒前
小蘑菇应助zzznznnn采纳,获得10
1秒前
Orange应助俊秀的白猫采纳,获得30
2秒前
深情安青应助小可采纳,获得10
2秒前
2秒前
情怀应助pearl采纳,获得10
2秒前
3秒前
所所应助cybbbbbb采纳,获得10
3秒前
果汁发布了新的文献求助10
3秒前
4秒前
4秒前
Lucas应助柚子采纳,获得10
4秒前
MADKAI发布了新的文献求助10
4秒前
5秒前
爆米花应助咕咕咕采纳,获得10
5秒前
zxy发布了新的文献求助10
5秒前
6秒前
醉人的仔发布了新的文献求助10
6秒前
daguan完成签到,获得积分10
6秒前
桐桐应助nikai采纳,获得10
6秒前
7秒前
8秒前
123完成签到,获得积分10
8秒前
善良香岚发布了新的文献求助10
8秒前
9秒前
9秒前
444完成签到,获得积分10
9秒前
任一发布了新的文献求助30
9秒前
莉莉发布了新的文献求助10
10秒前
Zoe发布了新的文献求助10
10秒前
Hover完成签到,获得积分10
10秒前
自然的茉莉完成签到,获得积分10
11秒前
11秒前
Mandy完成签到,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759