Mobile Collaborative Learning Over Opportunistic Internet of Vehicles

计算机科学 利用 车载自组网 上传 计算机网络 互联网 智能交通系统 互联网接入 建筑 车载通信系统 分布式计算 无线 无线自组网 计算机安全 电信 万维网 运输工程 工程类 艺术 视觉艺术
作者
Wenchao Xu,Haozhao Wang,Zhaoyi Lu,Cunqing Hua,Nan Cheng,Song Guo
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 3187-3199 被引量:4
标识
DOI:10.1109/tmc.2023.3273425
摘要

Machine learning models are widely applied for vehicular applications, which are essential to future intelligent transportation system (ITS). Traditional model training methods commonly employ a client-server architecture to perform local training and global iterative aggregations, which can consume significant bandwidth resources that are often absent in vehicular networks, especially in high vehicle density scenarios. Modern vehicle users naturally can collaboratively train machine learning models as they are the data owner and have strong local computing power from the onboard units (OBU). In this paper, we propose a novel collaborative learning scheme for mobile vehicles that can utilize the opportunistic vehicle-to-roadside (V2R) communication to exploit the common priors of vehicular data without interaction with a centralized coordinator. Specifically, vehicles perform local training during the driving journey, and simply upload its local model to roadside unit (RSU) encountered on the way. RSU's model will be updated accordingly and sent back to the vehicle via the V2R communication. We have theoretically shown that RSUs' models can eventually converge without a backhaul connection. Extensive experiments upon various road configurations demonstrate that the proposed scheme can efficiently train models among vehicles without dedicated Internet access and scale well with both the road range and vehicle density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
石溪发布了新的文献求助10
2秒前
pluto应助yangjoy采纳,获得10
3秒前
a初心不变完成签到,获得积分10
3秒前
3秒前
sxwang完成签到,获得积分10
3秒前
4秒前
范冰冰发布了新的文献求助10
4秒前
万能图书馆应助Refuel采纳,获得10
5秒前
yyy111完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
7秒前
hgt发布了新的文献求助10
7秒前
7秒前
shinysparrow应助ALUCK采纳,获得100
8秒前
空青发布了新的文献求助10
9秒前
10秒前
jack_kunn完成签到,获得积分10
11秒前
11秒前
脑洞疼应助李大仁采纳,获得10
12秒前
年轻的芒果完成签到,获得积分20
14秒前
19应助难过海云采纳,获得50
14秒前
14秒前
与枫发布了新的文献求助10
14秒前
张旭发布了新的文献求助10
16秒前
念想完成签到 ,获得积分10
17秒前
18秒前
北海完成签到 ,获得积分10
18秒前
舒心易烟发布了新的文献求助10
18秒前
张菁完成签到,获得积分10
19秒前
庾无敌完成签到,获得积分10
20秒前
20秒前
念想关注了科研通微信公众号
20秒前
失眠觅云发布了新的文献求助10
21秒前
学土木的凯蒂猫应助chj采纳,获得10
21秒前
22秒前
22秒前
JamesPei应助范冰冰采纳,获得10
22秒前
hgt完成签到,获得积分20
23秒前
anika完成签到,获得积分10
24秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306775
求助须知:如何正确求助?哪些是违规求助? 2940581
关于积分的说明 8497765
捐赠科研通 2614785
什么是DOI,文献DOI怎么找? 1428522
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263