癌症研究
肝细胞癌
免疫原性细胞死亡
免疫抑制
免疫系统
免疫疗法
免疫学
肝癌
溶瘤病毒
生物
作者
Bin Yan,Chen Liu,Hugang Li,Nana Wen,Wangbo Jiao,Siyao Wang,Yihan Zhang,Tingbin Zhang,Huan Zhang,Yi Lv,Haiming Fan,Xiaoli Liu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-05-10
卷期号:17 (10): 9209-9223
被引量:8
标识
DOI:10.1021/acsnano.3c00004
摘要
Magnetothermodynamic (MTD) therapy can activate antitumor immune responses by inducing potent immunogenic tumor cell death. However, tumor development is often accompanied by multifarious immunosuppressive mechanisms that can counter the efficacy of immunogenic MTD therapy. High-mobility group protein A1 (HMGA1) is overexpressed within hepatocellular carcinoma tissues and plays a crucial function in the generation of immunosuppressive effects. The reversal of HMGA1-mediated immunosuppression could enhance immunogenic tumor cell death-induced immune responses. A ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-based nanovehicle was developed, which is capable of efficiently mediating an alternating magnetic field for immunogenic tumor cell death induction, while concurrently delivering HMGA1 small interfering (si)RNA (siHMGA1) to the cytoplasm of hepatocellular carcinoma Hepa 1–6 cells for HMGA1 pathway interference. Using siHMGA1-FVIO-mediated MTD therapy, the proliferation of hepatocellular carcinoma Hepa 1–6 tumors was inhibited, and the survival of a mouse model was improved. We also demonstrated that siHMGA1-FVIO-mediated MTD achieved synergistic antitumor effects in a subcutaneous hepatocellular carcinoma Hepa 1–6 and H22 tumor model by promoting dendritic cell maturation, enhancing antigen-presenting molecule expression (both major histocompatibility complexes I and II), improving tumor-infiltrating T lymphocyte numbers, and decreasing immunosuppressive myeloid-derived suppressor cells, interleukin-10, and transforming growth factor-β expression. The nanoparticle system outlined in this paper has the potential to target HMGA1 and, in combination with MTD-induced immunotherapy, is a promising approach for hepatocellular carcinoma treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI