QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals

脑电图 特征提取 人工智能 计算机科学 精神分裂症(面向对象编程) 模式识别(心理学) 双相情感障碍 特征(语言学) 认知 特征选择 心理学 精神科 语言学 哲学
作者
Gülay Taşçı,Mehmet Veysel Gün,Tuğce Keleş,Burak Taşçı,Prabal Datta Barua,İrem Taşçı,Şengül Doğan,Mehmet Bayğın,Elizabeth E. Palmer,Türker Tuncer,Chui Ping Ooi,U. Rajendra Acharya
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:172: 113472-113472 被引量:2
标识
DOI:10.1016/j.chaos.2023.113472
摘要

Severe psychiatric disorders, including depressive disorders, schizophrenia spectrum disorders, and intellectual disability, have devastating impacts on vital life domains such as mental, psychosocial, and cognitive functioning and are correlated with an increased risk of mortality. Accurate symptom monitoring and early diagnosis are essential to optimize treatment and enhance patient outcomes. Electroencephalography (EEG) is a potential diagnostic and monitoring tool for mental health and cognitive disorders, as EEG signals are ideal inputs for machine learning models. In this paper, we propose a novel machine learning model for mental disorder detection based on EEG signals. electroencephalography (EEG) signals for the detection of three major mental health conditions, namely intellectual disability (ID), schizophrenia (SZ), and bipolar disorder (BD); and (ii) to introduce two novel conditional local binary pattern-based feature extractors for precise classification of these three classes. We collected a novel electroencephalography (EEG) signal dataset from 69 individuals, including a control group and participants diagnosed with bipolar disorder, schizophrenia, and intellectual disability. To extract informative features from the dataset, we developed two novel conditional feature extraction functions that improve upon traditional local binary pattern (LBP) functions by utilizing maximum and minimum distance vectors to generate patterns. We refer to these functions as quantum LBP (QLBP). Additionally, we employed wavelet packet decomposition to construct a multileveled feature extraction model. We evaluated several feature selection techniques, including neighborhood component analysis (NCA), Chi2, maximum relevance minimum redundancy (MRMR), and ReliefF, to select the most informative features. Finally, we employed iterative hard majority voting (IHMV) to obtain the final predicted results. Using our multichannel electroencephalography (EEG) signal dataset, we calculated channel-by-channel results and voted results for the classification of intellectual disability (ID), schizophrenia (SZ), and bipolar disorder (BD) classes. Our proposed model, employing the k-nearest neighbors (kNN) classifier with the leave-one subject out cross-validation (LOSO CV) strategy, achieved high accuracy rates of 97.47 %, 94.36 %, and 93.49 % for the ID, SZ, and BD classes, respectively. Employing the leave-one subject out cross-validation (LOSO CV) technique, our proposed model achieved classification accuracy rates of over 90 % for all cases, thereby providing strong evidence for the effectiveness of the proposed quantum local binary pattern (QLBP) feature extraction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Damon完成签到 ,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Leon完成签到,获得积分0
22秒前
十一月的阴天完成签到 ,获得积分10
25秒前
自强不息完成签到 ,获得积分10
26秒前
有夜空的地方必然有星河完成签到 ,获得积分10
38秒前
雪山飞龙发布了新的文献求助10
45秒前
能干的山雁完成签到 ,获得积分10
46秒前
48秒前
科研通AI2S应助雪山飞龙采纳,获得10
52秒前
萤火虫发布了新的文献求助10
54秒前
追梦人2016完成签到 ,获得积分10
56秒前
ATK20000完成签到 ,获得积分10
58秒前
summer完成签到,获得积分10
1分钟前
福祸相依完成签到,获得积分10
1分钟前
坦率完成签到 ,获得积分10
1分钟前
彭于晏应助wybdsj采纳,获得10
1分钟前
猴子请来的救兵完成签到 ,获得积分10
1分钟前
shuai发布了新的文献求助10
1分钟前
萤火虫完成签到,获得积分10
1分钟前
水文小白完成签到,获得积分10
1分钟前
lhn完成签到 ,获得积分10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助shuai采纳,获得10
1分钟前
四斤瓜完成签到 ,获得积分10
1分钟前
星空完成签到 ,获得积分10
1分钟前
1分钟前
wybdsj发布了新的文献求助10
1分钟前
1分钟前
wybdsj完成签到,获得积分10
1分钟前
ZY完成签到 ,获得积分10
1分钟前
luffy189完成签到 ,获得积分10
2分钟前
丰富的大地完成签到,获得积分10
2分钟前
一味愚完成签到,获得积分10
2分钟前
田一完成签到 ,获得积分10
2分钟前
Wang完成签到 ,获得积分10
2分钟前
居里姐姐完成签到 ,获得积分10
2分钟前
2分钟前
cx完成签到,获得积分10
2分钟前
晴空万里完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003818
捐赠科研通 2734630
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477