Temporal instability assessment of motorcyclist-injury severities using categorical principal component analysis and random parameter approach with heterogeneity in means

主成分分析 范畴变量 不稳定性 统计 计算机科学 数学 物理 机械
作者
Qiong Yu,Yue Maggie Zhou,Chuan Xu,Eskindir Ayele Atumo,Xinguo Jiang
出处
期刊:Journal of Transportation Safety & Security [Taylor & Francis]
卷期号:16 (4): 347-374 被引量:2
标识
DOI:10.1080/19439962.2023.2214509
摘要

AbstractAbstractMotorcyclists are considered as one of the most vulnerable road participants that often suffer higher injury severities. Furthermore, contributing factors of motorcyclist-injury severities may vary over time, which requires further investigation. In this study, with Michigan crash data from 2015 to 2018, categorical principal component analysis (CatPCA) is firstly conducted to assess the similarities/differences among yearly samples. Then, a random parameter logit model with heterogeneity in means is employed for each analysis year. Marginal effects are also estimated to quantify the temporal instability of the influencing factors. The results reveal that some determinants of motorcyclist-injury severities are temporally unstable across the studied years, such as middle-aged motorcyclist, helmet worn, signal control, clear weather, two-vehicle crashes, and disabling damage. However, some factors have relatively stable effects on motorcyclist-injury severities in most of the year periods, such as alcohol impaired, totally or partially ejected from the motorcycle, stopped on the roadway, and posted speed limits higher of 50 mph. The findings can help decision makers to propose cost-effective motorcycle safety improvements and policies.Keywords: motorcyclist-injury severitycategorical principal component analysisrandom parameter logit modelheterogeneity in meanstemporal instability Additional informationFundingThe study is funded by National Natural Science Foundation of China (NSFC-72271207). Special thanks to Eric F. Jiang (Vandegrift High School) for polishing the overall language of the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨宝发布了新的文献求助10
1秒前
科研通AI6应助背后的雨竹采纳,获得10
1秒前
qqwdss发布了新的文献求助10
2秒前
2秒前
李健应助科研小白采纳,获得10
3秒前
科研通AI6应助李开心采纳,获得10
4秒前
qianduoduo关注了科研通微信公众号
5秒前
理理发布了新的文献求助10
5秒前
5秒前
英俊的铭应助Yzz采纳,获得10
5秒前
6秒前
wanci应助WYS采纳,获得10
6秒前
SciGPT应助阿巴阿巴采纳,获得10
6秒前
6秒前
侧耳倾听发布了新的文献求助10
6秒前
7秒前
Kathy发布了新的文献求助10
8秒前
科目三应助Salut采纳,获得10
9秒前
李爱国应助chengzi202采纳,获得10
9秒前
852应助123采纳,获得10
9秒前
9秒前
深情安青应助侧耳倾听采纳,获得10
10秒前
Wlgd完成签到,获得积分20
10秒前
合成研究菜鸟完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
糊里糊涂发布了新的文献求助10
12秒前
碧草柴香发布了新的文献求助100
12秒前
浮游应助杨宝采纳,获得10
12秒前
科研小白书hz完成签到 ,获得积分10
13秒前
理理完成签到,获得积分10
13秒前
FangY1发布了新的文献求助10
13秒前
7171717发布了新的文献求助10
14秒前
orixero应助鲸鱼采纳,获得10
14秒前
15秒前
小方应助一块巧克力采纳,获得20
15秒前
15秒前
端庄的冰枫完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917