Temporal instability assessment of motorcyclist-injury severities using categorical principal component analysis and random parameter approach with heterogeneity in means

主成分分析 范畴变量 不稳定性 统计 计算机科学 数学 物理 机械
作者
Qiong Yu,Yue Maggie Zhou,Chuan Xu,Eskindir Ayele Atumo,Xinguo Jiang
出处
期刊:Journal of Transportation Safety & Security [Taylor & Francis]
卷期号:16 (4): 347-374 被引量:2
标识
DOI:10.1080/19439962.2023.2214509
摘要

AbstractAbstractMotorcyclists are considered as one of the most vulnerable road participants that often suffer higher injury severities. Furthermore, contributing factors of motorcyclist-injury severities may vary over time, which requires further investigation. In this study, with Michigan crash data from 2015 to 2018, categorical principal component analysis (CatPCA) is firstly conducted to assess the similarities/differences among yearly samples. Then, a random parameter logit model with heterogeneity in means is employed for each analysis year. Marginal effects are also estimated to quantify the temporal instability of the influencing factors. The results reveal that some determinants of motorcyclist-injury severities are temporally unstable across the studied years, such as middle-aged motorcyclist, helmet worn, signal control, clear weather, two-vehicle crashes, and disabling damage. However, some factors have relatively stable effects on motorcyclist-injury severities in most of the year periods, such as alcohol impaired, totally or partially ejected from the motorcycle, stopped on the roadway, and posted speed limits higher of 50 mph. The findings can help decision makers to propose cost-effective motorcycle safety improvements and policies.Keywords: motorcyclist-injury severitycategorical principal component analysisrandom parameter logit modelheterogeneity in meanstemporal instability Additional informationFundingThe study is funded by National Natural Science Foundation of China (NSFC-72271207). Special thanks to Eric F. Jiang (Vandegrift High School) for polishing the overall language of the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowei666完成签到,获得积分10
1秒前
1秒前
文献小白发布了新的文献求助10
2秒前
柠安发布了新的文献求助10
2秒前
落后以旋发布了新的文献求助10
2秒前
Lucas应助孤独烤鸡采纳,获得10
2秒前
喻明辉完成签到,获得积分10
3秒前
英俊的铭应助Tmac采纳,获得10
3秒前
在水一方应助Schwarz采纳,获得30
4秒前
4秒前
5秒前
yanyanyan发布了新的文献求助20
5秒前
yznfly应助tanglu采纳,获得100
6秒前
SuperZzz发布了新的文献求助50
6秒前
Wei_Li发布了新的文献求助10
6秒前
7秒前
7秒前
小二郎应助明昼采纳,获得10
7秒前
文献小白完成签到,获得积分10
8秒前
8秒前
向星完成签到,获得积分10
8秒前
8秒前
淡定采文完成签到,获得积分10
8秒前
9秒前
阿强哥20241101完成签到,获得积分10
9秒前
10秒前
故意的毛豆完成签到,获得积分10
11秒前
源主儿发布了新的文献求助10
11秒前
CipherSage应助塵埃采纳,获得10
11秒前
xxxxx发布了新的文献求助10
11秒前
SciGPT应助qi采纳,获得10
12秒前
扎心应助文艺向日葵采纳,获得10
12秒前
王九八发布了新的文献求助10
12秒前
kingwill应助科研通管家采纳,获得20
12秒前
zc发布了新的文献求助10
12秒前
醒醒应助科研通管家采纳,获得10
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
彭于晏应助张美丽采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306