Temporal instability assessment of motorcyclist-injury severities using categorical principal component analysis and random parameter approach with heterogeneity in means

主成分分析 范畴变量 不稳定性 统计 计算机科学 数学 物理 机械
作者
Qiong Yu,Yue Maggie Zhou,Chuan Xu,Eskindir Ayele Atumo,Xinguo Jiang
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:16 (4): 347-374 被引量:2
标识
DOI:10.1080/19439962.2023.2214509
摘要

AbstractAbstractMotorcyclists are considered as one of the most vulnerable road participants that often suffer higher injury severities. Furthermore, contributing factors of motorcyclist-injury severities may vary over time, which requires further investigation. In this study, with Michigan crash data from 2015 to 2018, categorical principal component analysis (CatPCA) is firstly conducted to assess the similarities/differences among yearly samples. Then, a random parameter logit model with heterogeneity in means is employed for each analysis year. Marginal effects are also estimated to quantify the temporal instability of the influencing factors. The results reveal that some determinants of motorcyclist-injury severities are temporally unstable across the studied years, such as middle-aged motorcyclist, helmet worn, signal control, clear weather, two-vehicle crashes, and disabling damage. However, some factors have relatively stable effects on motorcyclist-injury severities in most of the year periods, such as alcohol impaired, totally or partially ejected from the motorcycle, stopped on the roadway, and posted speed limits higher of 50 mph. The findings can help decision makers to propose cost-effective motorcycle safety improvements and policies.Keywords: motorcyclist-injury severitycategorical principal component analysisrandom parameter logit modelheterogeneity in meanstemporal instability Additional informationFundingThe study is funded by National Natural Science Foundation of China (NSFC-72271207). Special thanks to Eric F. Jiang (Vandegrift High School) for polishing the overall language of the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好旺发布了新的文献求助10
刚刚
小西发布了新的文献求助10
刚刚
刚刚
风中冰香应助犹豫雅寒采纳,获得10
1秒前
天天快乐应助ellen采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
米丫丫米完成签到,获得积分20
3秒前
隐形听双完成签到 ,获得积分10
4秒前
4秒前
5秒前
haha完成签到 ,获得积分10
5秒前
长安完成签到 ,获得积分10
5秒前
Lucas应助刘艳林采纳,获得10
5秒前
wwwwpy发布了新的文献求助10
5秒前
倪好完成签到,获得积分10
6秒前
党阳阳完成签到,获得积分10
7秒前
子小孙发布了新的文献求助10
7秒前
ly1完成签到 ,获得积分10
7秒前
8秒前
8秒前
Onism发布了新的文献求助10
8秒前
Yy完成签到,获得积分10
8秒前
浮游应助Harden采纳,获得10
8秒前
范冰冰完成签到,获得积分10
9秒前
coldzer0完成签到,获得积分10
9秒前
黄帅比完成签到,获得积分10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
ding应助张兰兰采纳,获得10
11秒前
11秒前
贪玩若剑完成签到,获得积分10
12秒前
子小孙完成签到,获得积分20
12秒前
sss发布了新的文献求助10
12秒前
12秒前
汉堡包应助陈星锦采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458