Temporal instability assessment of motorcyclist-injury severities using categorical principal component analysis and random parameter approach with heterogeneity in means

主成分分析 范畴变量 不稳定性 统计 计算机科学 数学 物理 机械
作者
Qiong Yu,Yue Maggie Zhou,Chuan Xu,Eskindir Ayele Atumo,Xinguo Jiang
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:16 (4): 347-374 被引量:2
标识
DOI:10.1080/19439962.2023.2214509
摘要

AbstractAbstractMotorcyclists are considered as one of the most vulnerable road participants that often suffer higher injury severities. Furthermore, contributing factors of motorcyclist-injury severities may vary over time, which requires further investigation. In this study, with Michigan crash data from 2015 to 2018, categorical principal component analysis (CatPCA) is firstly conducted to assess the similarities/differences among yearly samples. Then, a random parameter logit model with heterogeneity in means is employed for each analysis year. Marginal effects are also estimated to quantify the temporal instability of the influencing factors. The results reveal that some determinants of motorcyclist-injury severities are temporally unstable across the studied years, such as middle-aged motorcyclist, helmet worn, signal control, clear weather, two-vehicle crashes, and disabling damage. However, some factors have relatively stable effects on motorcyclist-injury severities in most of the year periods, such as alcohol impaired, totally or partially ejected from the motorcycle, stopped on the roadway, and posted speed limits higher of 50 mph. The findings can help decision makers to propose cost-effective motorcycle safety improvements and policies.Keywords: motorcyclist-injury severitycategorical principal component analysisrandom parameter logit modelheterogeneity in meanstemporal instability Additional informationFundingThe study is funded by National Natural Science Foundation of China (NSFC-72271207). Special thanks to Eric F. Jiang (Vandegrift High School) for polishing the overall language of the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
重要的大白菜真实的钥匙完成签到,获得积分20
1秒前
慈祥的鸣凤完成签到 ,获得积分10
1秒前
fudandan完成签到,获得积分10
2秒前
赘婿应助taobao采纳,获得10
3秒前
彭于晏应助任梓宁采纳,获得10
4秒前
5秒前
5秒前
Orange应助jialu采纳,获得10
5秒前
5秒前
5秒前
6秒前
cx完成签到,获得积分10
6秒前
李梓权完成签到,获得积分10
7秒前
称心寒松发布了新的文献求助10
8秒前
tmr完成签到,获得积分10
9秒前
赘婿应助cx采纳,获得30
9秒前
李梓权发布了新的文献求助10
10秒前
生动路人发布了新的文献求助10
10秒前
10秒前
北沐发布了新的文献求助10
10秒前
Aloha完成签到 ,获得积分20
10秒前
大个应助扎心采纳,获得10
10秒前
11秒前
琳子里发布了新的文献求助10
11秒前
12秒前
wanci应助WQ采纳,获得10
12秒前
12秒前
12秒前
龙藏在云里完成签到,获得积分10
13秒前
13秒前
斯文败类应助自然篮球采纳,获得10
13秒前
13秒前
han完成签到,获得积分20
14秒前
任梓宁发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
15秒前
阻塞阀发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794