肠道菌群
拉伤
乳酸菌
生物
微生物学
化学
食品科学
细菌
生物化学
解剖
遗传学
作者
Yuying Wang,Xiaozhong Wang,Xinzhu Xiao,Shufang Yu,Wennan Huang,Benqiang Rao,Fenglin Chen
出处
期刊:Nutrients
[MDPI AG]
日期:2023-01-28
卷期号:15 (3): 670-670
被引量:8
摘要
Type 2 diabetes (T2D) is usually accompanied by obesity and nonalcoholic fatty-liver-related insulin resistance. The link between T2D and dysbiosis has been receiving increasing attention. Probiotics can improve insulin sensitivity by regulating imbalances in microbiota, but efficacy varies based on the probiotic used. This study screened the main strain in the feces of healthy adult mice and found it to be a new Lactobacillus (abbreviated as Lb., named as CGMCC No. 21661) after genetic testing. We designed the most common Bifidobacterium longum subsp. longum (CGMCC1.2186, abbreviated as B. longum. subsp.), fecal microbiota transplantation (FMT), and Lb. CGMCC No. 21661 protocols to explore the best way for modulating dysbiosis to improve T2D. After 6 weeks of gavage in T2D mice, it was found that all three protocols had a therapeutic alleviating effect. Among them, compared with the B. longum. subsp. and FMT, the Lb. CGMCC No. 21661 showed a 1- to 2-fold decrease in blood glucose (11.84 ± 1.29 mmol/L, p < 0.05), the lowest HOMA-IR (p < 0.05), a 1 fold increase in serum glucagon-like peptide-1 (5.84 ± 1.1 pmol/L, p < 0.05), and lowest blood lipids (total cholesterol, 2.21 ± 0.68 mmol/L, p < 0.01; triglycerides, 0.4 ± 0.15 mmol/L, p < 0.01; Low-density lipoprotein cholesterol, 0.53 ± 0.16 mmol/L, p < 0.01). In addition, tissue staining in the Lb. CGMCC No. 21661 showed a 2- to 3-fold reduction in T2D-induced fatty liver (p < 0.0001), a 1- to 2-fold decrease in pancreatic apoptotic cells (p < 0.05), and a significant increase in colonic mucus layer thickness (p < 0.05) compared with the B. longum. subsp. and FMT. The glucose and lipid lowering effects of this Lb. CGMCC No. 21661 indicate that it may provide new ideas for the treatment of diabetes.
科研通智能强力驱动
Strongly Powered by AbleSci AI