Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection

人工智能 编码器 棱锥(几何) 计算机科学 分割 模式识别(心理学) 计算机视觉 联营 残余物 算法 数学 几何学 操作系统
作者
Hongwei Zhang,Shihao Wang,Shuai Lu,Le Yao,Yibo Hu
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (15-16): 3459-3477 被引量:22
标识
DOI:10.1177/00405175221149450
摘要

Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttt完成签到,获得积分20
刚刚
科研通AI5应助abc采纳,获得10
1秒前
大白发布了新的文献求助10
2秒前
WWW发布了新的文献求助10
2秒前
203发布了新的文献求助10
2秒前
2秒前
wang发布了新的文献求助10
2秒前
miumiu发布了新的文献求助10
3秒前
栗子发布了新的文献求助10
3秒前
zy完成签到 ,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
思源应助qikuo采纳,获得10
8秒前
mimimi发布了新的文献求助10
8秒前
Koalas应助船锚在玉龙雪山采纳,获得10
9秒前
CJY1215发布了新的文献求助10
9秒前
烟花应助大白采纳,获得10
10秒前
10秒前
11秒前
魏冉发布了新的文献求助10
11秒前
wang完成签到,获得积分10
12秒前
在水一方应助momo采纳,获得10
13秒前
小李李发布了新的文献求助10
13秒前
liu完成签到,获得积分10
13秒前
Monster完成签到,获得积分10
14秒前
咕哒发布了新的文献求助50
16秒前
CipherSage应助栗子采纳,获得10
16秒前
烟花应助hujin采纳,获得10
17秒前
Ava应助蘑菇腿采纳,获得10
17秒前
xxsw发布了新的文献求助150
17秒前
California完成签到 ,获得积分10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104