Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection

人工智能 编码器 棱锥(几何) 计算机科学 分割 模式识别(心理学) 计算机视觉 联营 残余物 算法 数学 几何学 操作系统
作者
Hongwei Zhang,Shihao Wang,Shuai Lu,Le Yao,Yibo Hu
出处
期刊:Textile Research Journal [SAGE]
卷期号:93 (15-16): 3459-3477 被引量:22
标识
DOI:10.1177/00405175221149450
摘要

Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助aria采纳,获得10
刚刚
Huzhu应助开口笑采纳,获得10
1秒前
风清扬发布了新的文献求助10
1秒前
1秒前
1秒前
852应助火星上的书萱采纳,获得10
1秒前
学分完成签到 ,获得积分10
2秒前
小哪吒发布了新的文献求助10
2秒前
2秒前
wandering发布了新的文献求助10
2秒前
Maeth完成签到,获得积分10
2秒前
2秒前
SAKURA应助浅忆采纳,获得10
3秒前
3秒前
4秒前
Bioxcai完成签到,获得积分10
4秒前
舒心的面包应助少年锦时采纳,获得20
4秒前
6秒前
xiaofang完成签到,获得积分10
7秒前
宁静致远完成签到,获得积分10
7秒前
bqin完成签到,获得积分10
7秒前
qqwwe完成签到,获得积分10
7秒前
EE发布了新的文献求助10
7秒前
小王子发布了新的文献求助30
8秒前
追寻澜完成签到,获得积分10
8秒前
vivi发布了新的文献求助10
8秒前
小熊梅尼耶完成签到,获得积分10
9秒前
王梓萌完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
太阳能之子完成签到,获得积分10
10秒前
科研通AI6应助小哪吒采纳,获得10
11秒前
11秒前
犹豫晓啸完成签到,获得积分10
11秒前
11秒前
隐形曼青应助王嘉豪采纳,获得10
11秒前
wz完成签到,获得积分20
11秒前
蔺亦丝发布了新的文献求助10
12秒前
Magicer发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244