材料科学
均方误差
超声波传感器
荷电状态
电池(电)
传输(电信)
人工神经网络
锂(药物)
离子
前馈
声学
算法
计算机科学
电子工程
生物系统
人工智能
物理
电信
工程类
数学
生物
统计
控制工程
内分泌学
医学
功率(物理)
量子力学
作者
Zhenyu Huang,Yu Zhou,Zhe Deng,Kai Huang,Mingkang Xu,Yue Shen,Yunhui Huang
标识
DOI:10.1021/acsami.2c22210
摘要
The uneven distribution of state of charge (SoC) in the lithium-ion battery is a key factor to cause fast decay of local electrochemical performance. Here, we report an acoustic method to realize SoC mapping in a pouch cell. A focused ultrasound beam is used to scan the cell, and the transmitted ultrasonic wave is analyzed with a deep learning algorithm based on the feedforward neural network. The deep learning algorithm effectively suppresses the disturbance of structural variation in different cells. As a result, the root mean squared error (RMSE) of the estimated local SoC is reduced to 3.02% when applying to different positions on different pouch cells, which is 11.07% of the RMSE by direct fitting SoC with acoustic time of flight. Combining with the progressive scanning technique, our method can realize non-destructive in situ SoC mapping with 1 mm in-plane resolution on pouch cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI