Citizen preferences and government chatbot social characteristics: Evidence from a discrete choice experiment

聊天机器人 政府(语言学) 众包 背景(考古学) 社会认同理论 心理学 社会心理学 知识管理 计算机科学 万维网 社会团体 古生物学 生物 哲学 语言学
作者
Jingrui Ju,Qingguo Meng,Fangfang Sun,Luning Liu,Shweta Singh
出处
期刊:Government Information Quarterly [Elsevier]
卷期号:40 (3): 101785-101785 被引量:26
标识
DOI:10.1016/j.giq.2022.101785
摘要

Government chatbots have become increasingly popular as artificial-intelligence-based tools to improve communication between the government and its citizens. This study explores the interaction mode design of a trustworthy government chatbot, which involves multiple social characteristics from the user-centric perspective. A discrete choice experiment was conducted in the context of Chinese government chatbots to examine the effects of various social characteristics on citizen preferences. Participants utilized a crowdsourcing survey platform to report their preferences for interaction processes designed with distinct sets of social characteristics. Valid data were obtained from 371 participants and analyzed using a multinomial logit model. The results indicate that (in order from highest to lowest impact) emotional intelligence, proactivity, identity consistency, and conscientiousness significantly influence the citizens' preferences. Identity consistency has a negative effect, whereas the other factors all have positive impacts. It was also determined that some of these correlations are influenced by the participants' individual characteristics, such as age, gender, and prior experience with chatbots. This work provides empirical evidence for the relative importance of social characteristics and their impacts on user perception, expands the service dimension scope of information provision/communication (one of five categories of digital interaction), and facilitates the identification and operationalization of the social characteristics. We provide a theoretical framework to understand the interaction model design of a trustworthy government chatbot and also offer practical recommendations for government chatbot designers and policy implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenlc完成签到,获得积分20
2秒前
Nicole完成签到,获得积分10
3秒前
今后应助Anonymous采纳,获得10
3秒前
Xin完成签到,获得积分10
4秒前
4秒前
5秒前
13633501455完成签到,获得积分10
5秒前
5秒前
chenlc发布了新的文献求助10
5秒前
lMiraclel完成签到,获得积分10
6秒前
炙热的素完成签到,获得积分10
7秒前
8秒前
8秒前
诚心的黑猫完成签到,获得积分10
8秒前
wz完成签到,获得积分10
8秒前
打打应助TCB采纳,获得10
10秒前
sssaasa完成签到,获得积分10
11秒前
若初拾光发布了新的文献求助10
12秒前
希望天下0贩的0应助Myx采纳,获得10
12秒前
12秒前
wz发布了新的文献求助10
14秒前
如意契关注了科研通微信公众号
14秒前
吃一口王俊凯完成签到,获得积分10
14秒前
14秒前
炙热的素发布了新的文献求助10
15秒前
16秒前
kkkkkkk_完成签到,获得积分10
18秒前
18秒前
正午完成签到,获得积分20
20秒前
20秒前
20秒前
健康的妙菱完成签到,获得积分10
20秒前
香蕉觅云应助YF采纳,获得10
21秒前
22秒前
22秒前
qian发布了新的文献求助10
23秒前
平淡南露发布了新的文献求助10
24秒前
Laura完成签到,获得积分10
24秒前
Anonymous发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793