内质网
效应器
生物
分泌物
细胞生物学
分泌蛋白
分子生物学
生物化学
作者
Zhe Chen,Qi Zhao,Ziqi Li,Zichao Song,Xiaoru Wang,Ying Shao,Jing Tu,Xiangjun Song
标识
DOI:10.1186/s13567-023-01138-0
摘要
Abstract The type VI secretion system (T6SS) is a secretion apparatus widely found in pathogenic Gram-negative bacteria and is important for competition among various bacteria and host cell pathogenesis. Hcp is a core component of functional T6SS and transports toxic effectors into target cells by assembling to form tube-like structures. Studies have shown that Hcp simultaneously acts as an effector to influence cellular physiological activities; however, the mechanism of its activity in host cells remains unclear. To investigate the target of effector protein Hcp2a in a chicken fibroblast cell line, we first detected the subcellular localization of Hcp2a in DF-1 cells by indirect immunofluorescence assay. The results showed that Hcp2a protein was localized in the endoplasmic reticulum of DF-1 cells. We also used a streptavidin–biotin affinity pull-down assay combined with LC–MS/MS to screen DF-1 cell lysates for proteins that interact with Hcp2a and analyze the cellular functional pathways affected by them. The results showed that Hcp2a interacted with 52 DF-1 cellular proteins that are involved in multiple intracellular pathways. To further explore the mechanism of Hcp2a protein targeting the endoplasmic reticulum of DF-1 cells, we screened three endoplasmic reticulum-associated proteins (RSL1D1, RPS3A, and RPL23) from 52 prey proteins of Hcp2a for protein–protein molecular docking analysis. The docking analysis showed that the effector protein Hcp2a and the RPL23 protein had good complementarity. Overall, we propose that Hcp2a has strong binding activity to the RPL23 protein in DF-1 cells and this may help Hcp2a anchor to the endoplasmic reticulum in DF-1 cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI