亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight Multiscale Feature Fusion Network for Remote Sensing Object Counting

计算机科学 卷积神经网络 目标检测 背景(考古学) 特征(语言学) 特征提取 人工智能 对象(语法) 过程(计算) 数据挖掘 模式识别(心理学) 语言学 生物 操作系统 哲学 古生物学
作者
Jun Yi,Zhilong Shen,Fan Chen,Yiheng Zhao,Shan Xiao,Wei Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:14
标识
DOI:10.1109/tgrs.2023.3238185
摘要

In recent decades, remote sensing object counting has attracted increasing attention from academia and industry due to its potential benefits in urban traffic, public safety, and road planning. However, this issue is becoming a challenge for computer vision because of various technical barriers, such as large-scale variation, complex background interference, and nonuniform density distribution. Recent results show hopeful prospects for object counting using convolutional neural networks (CNNs), but most existing CNN-based methods draw on larger and more complex architectures, which leads to a huge computational and storage burdens, severely limiting their application in real-world scenarios. In this article, a lightweight multiscale feature fusion network for remote sensing object counting, named LMSFFNet, is presented to achieve a better balance between the running speed of the network and the counting accuracy. Specifically, in the encoding process, we select a MobileViT module as the backbone of the network to reduce the numbers of network parameters and computing cost. In return, a cascade structure of the channel–spatial attention mechanisms compensates for the weaker feature extraction ability of the lightweight network. In the decoding process, a lightweight multiscale context fusion module (LMCFM) as a multiscale feature fusion module is developed to solve the problem that the number of parameters increases with the expansion of the object scale when extracting multiscale features. In addition, a lightweight counting scale pooling module (LCSPM) is used to mine the subtle features of the target object. Two kinds of typical object counting experiments, namely, experiments on remote sensing benchmarks (RSOC dataset) and crowd benchmarks (ShanghaiTech, UCF-QNRF, and UCF_CC_50 datasets), show the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莎莎来了完成签到,获得积分10
30秒前
科研通AI5应助玄同采纳,获得10
38秒前
40秒前
44秒前
太空工程师完成签到,获得积分10
49秒前
黄沙漠完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助Shika采纳,获得10
1分钟前
1分钟前
1分钟前
zulpiye发布了新的文献求助10
1分钟前
1分钟前
精灵夜雨发布了新的文献求助10
1分钟前
zulpiye完成签到,获得积分10
1分钟前
科研通AI2S应助Shika采纳,获得10
1分钟前
wyq完成签到 ,获得积分10
2分钟前
小蘑菇应助hywang采纳,获得10
2分钟前
彭于晏应助TEN采纳,获得10
2分钟前
研友_ZG4ml8完成签到 ,获得积分10
3分钟前
今后应助精灵夜雨采纳,获得10
3分钟前
Nancy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
carl发布了新的文献求助10
3分钟前
万默完成签到 ,获得积分10
3分钟前
3分钟前
KDS发布了新的文献求助10
3分钟前
DrJiang完成签到,获得积分10
3分钟前
3分钟前
在水一方应助KDS采纳,获得10
3分钟前
3分钟前
3分钟前
hywang完成签到,获得积分10
4分钟前
hywang发布了新的文献求助10
4分钟前
4分钟前
包驳发布了新的文献求助10
4分钟前
包驳完成签到,获得积分20
4分钟前
4分钟前
TEN发布了新的文献求助10
4分钟前
伊森xay发布了新的文献求助10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555748
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390876
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715803