Hyperspectral Anomaly Detection Based on Adaptive Low-Rank Transformed Tensor

高光谱成像 数学 张量(固有定义) 秩(图论) 异常检测 像素 模式识别(心理学) 人工智能 算法 计算机科学 组合数学 纯数学
作者
Siyu Sun,Jun Liu,Ziwei Zhang,Wei Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3236641
摘要

Hyperspectral anomaly detection, which is aimed at distinguishing anomaly pixels from the surroundings in spatial features and spectral characteristics, has attracted considerable attention due to its various applications. In this article, we propose a novel hyperspectral anomaly detection algorithm based on adaptive low-rank transform, in which the input hyperspectral image (HSI) is divided into a background tensor, an anomaly tensor, and a noise tensor. To take full advantage of the spatial–spectral information, the background tensor is represented as the product of a transformed tensor and a low-rank matrix. The low-rank constraint is imposed on frontal slices of the transformed tensor to depict the spatial–spectral correlation of the HSI background. Besides, we initialize a matrix with predefined size and then minimize its $l_{2.1}$ -norm to adaptively derive an appropriate low-rank matrix. The anomaly tensor is constrained with the $l_{2.1.1}$ -norm to depict the group sparsity of anomalous pixels. We integrate all regularization terms and a fidelity term into a non-convex problem and develop a proximal alternating minimization (PAM) algorithm to solve it. Interestingly, the sequence generated by the PAM algorithm is proven to converge to a critical point. Experimental results conducted on four widely used datasets demonstrate the superiority of the proposed anomaly detector over several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘蒙完成签到,获得积分10
刚刚
充电宝应助溪风不渡采纳,获得10
1秒前
欧阳万仇完成签到,获得积分10
1秒前
1秒前
852应助甜美冥茗采纳,获得30
2秒前
wonderingria发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
天天都开心完成签到,获得积分10
4秒前
4秒前
挺喜欢你完成签到,获得积分10
4秒前
Chong完成签到,获得积分10
4秒前
微笑完成签到,获得积分10
5秒前
Mintkarla完成签到,获得积分10
5秒前
乐乐应助流动中的小孩采纳,获得10
5秒前
炸炸完成签到,获得积分10
5秒前
6秒前
DNase发布了新的文献求助10
6秒前
6秒前
huangqqk完成签到,获得积分10
6秒前
6秒前
彭于晏应助yyw采纳,获得10
7秒前
wangyup发布了新的文献求助10
7秒前
7秒前
7秒前
顾宇完成签到,获得积分10
7秒前
8秒前
传奇3应助wonderingria采纳,获得10
8秒前
Rondab应助Mintkarla采纳,获得10
10秒前
可爱的函函应助zhangyuyu采纳,获得10
10秒前
10秒前
PinKing完成签到 ,获得积分10
10秒前
自由的从梦完成签到,获得积分10
10秒前
小马甲应助大西瓜采纳,获得10
11秒前
顾宇发布了新的文献求助10
11秒前
wangyup完成签到,获得积分10
11秒前
Gu发布了新的文献求助10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011574
求助须知:如何正确求助?哪些是违规求助? 3551304
关于积分的说明 11308331
捐赠科研通 3285566
什么是DOI,文献DOI怎么找? 1811101
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811638