Vision-based real-time structural vibration measurement through deep-learning-based detection and tracking methods

人工智能 跟踪(教育) 计算机视觉 特征(语言学) 计算机科学 噪音(视频) 深度学习 振动 参数统计 跳跃式监视 钥匙(锁) 地震振动台 结构健康监测 目标检测 工程类 声学 模式识别(心理学) 图像(数学) 物理 数学 结构工程 心理学 计算机安全 教育学 哲学 统计 语言学
作者
Xiao Pan,T.Y. Yang,Yifei Xiao,Hongcan Yao,Hojjat Adeli
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:281: 115676-115676 被引量:25
标识
DOI:10.1016/j.engstruct.2023.115676
摘要

Structural vibration measurement is crucial in structural health monitoring and structural laboratory tests. Traditional contact type sensors are usually required to be attached to the test specimens, which may be difficult to install, and may affect the structural properties and response. Non-contact type wireless sensors are usually expensive and require specialized workers to install and operate. In recent years, vision-based tracking methods for structural vibration measurement have gained increasing interests due to their high accuracy, non-contact feature and low cost. However, traditional vision-based tracking algorithms are susceptible to external environmental conditions such as illumination and background noise. In this paper, two real-time methods, YOLOv3-tiny and YOLOv3-tiny-KLT, are proposed to track structural motions. In the first method, YOLOv3-tiny is established based on the YOLOv3 architecture to localize customized markers where structural displacements are directly determined from the bounding boxes generated. The second method, YOLOv3-tiny-KLT, is a more advanced method which combines the YOLOv3-tiny detector and the traditional KLT tracking algorithm. The pretrained YOLOv3-tiny is deployed to localize the targets automatically, which will then be tracked by Kanade‐Lucas‐Tomasi algorithm. YOLOv3-tiny is intended to provide baseline vibration measurement when the KLT tracking gets lost. The proposed methods were implemented for the videos of shake table tests on a two-storey steel structure. Parametric studies were conducted for the YOLOv3-tiny-KLT method to examine its sensitivity to the tracking parameters. The results show that the proposed method is capable of achieving real-time speed and high accuracy, when compared with the traditional displacement sensors including linear variable differential transducer (LVDT) and String Pots. It is also found that the combined YOLOv3-tiny-KLT approach achieves higher accuracy than YOLOv3-tiny only method, and higher robustness than KLT only method against illumination changes and background noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cordero完成签到,获得积分10
1秒前
spiritpope发布了新的文献求助30
1秒前
汤睿文发布了新的文献求助10
2秒前
胡一一完成签到,获得积分10
2秒前
3秒前
浮游应助吴彦祖采纳,获得10
5秒前
6秒前
大个应助樱岛麻衣采纳,获得10
6秒前
6秒前
科目三应助liubo采纳,获得10
6秒前
淡然的菲鹰完成签到 ,获得积分10
6秒前
liuteng发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
7秒前
7秒前
崔尔蓉完成签到,获得积分10
8秒前
aa发布了新的文献求助10
10秒前
11秒前
西梅发布了新的文献求助10
12秒前
14秒前
暖冬22发布了新的文献求助10
14秒前
景穆完成签到,获得积分10
15秒前
15秒前
仁仁仁完成签到,获得积分10
16秒前
16秒前
17秒前
coco完成签到,获得积分20
17秒前
完美世界应助lulu采纳,获得10
18秒前
xz完成签到,获得积分10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得20
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
19秒前
Orange应助科研通管家采纳,获得10
19秒前
Livrik发布了新的文献求助10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920