MGFFCNN: Two‐dimensional matrix spectroscopy combined with multi‐channel gradient feature fusion convolutional neural network means to diagnose glioma and esophageal cancer patients

特征(语言学) 模式识别(心理学) 拉曼光谱 融合 基质(化学分析) 人工智能 单位矩阵 计算机科学 材料科学 物理 光学 特征向量 量子力学 哲学 语言学 复合材料
作者
Chen Chen,Chunzhi Meng,Yuhua Ma,Min Zhu,Xiaohui Wang,Xiaodong Xie,Cheng Chen
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:54 (4): 385-396 被引量:1
标识
DOI:10.1002/jrs.6502
摘要

Abstract Currently, glioma and esophageal cancer are common malignant tumors worldwide with low cure rate and high mortality rate, and they endanger human health seriously. In this study, we analyzed the correlation and difference between glioma and esophageal cancer through serum mid‐infrared and Raman spectra and established a multi‐channel gradient feature fusion convolutional neural network to achieve rapid diagnosis of glioma and esophageal cancer patients. We transformed the spectra from one‐dimensional matrix to two‐dimensional matrix form separately as the input of the network and fused the features extracted from the Flatten layer of the network. First, we fused the features of mid‐infrared and Raman spectra and constructed a two‐channel gradient feature fusion idea. Then, in order to enrich the learning of features further, we took the first‐order derivative of mid‐infrared and Raman original spectra, respectively, and used the derivative spectra as two channels as well. The mid‐infrared and Raman spectra in two‐dimensional matrix form were fused with their derivative spectral features, respectively, and the fused features were fused again to construct a four‐channel gradient feature fusion network model. Finally, compared with the single original spectrum and the one‐dimensional matrix feature fusion spectrum, the two‐dimensional matrix feature fused spectrum was more advantageous, and the classification accuracy of the model was as high as 99.2% ± 0.7%. This study showed that two‐dimensional matrix spectra combined with multi‐channel gradient feature fusion technique had great potential for rapid and accurate identification of patients with glioma and esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
水水加油发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
6秒前
Guochunbao完成签到,获得积分10
6秒前
7秒前
生动的丝应助zz采纳,获得10
7秒前
8秒前
123发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
shang发布了新的文献求助10
12秒前
my发布了新的文献求助10
12秒前
能HJY发布了新的文献求助30
13秒前
善学以致用应助鱼叔采纳,获得10
13秒前
核桃发布了新的文献求助10
14秒前
15秒前
Flow3ry完成签到,获得积分10
16秒前
HugginBearOuO发布了新的文献求助10
17秒前
undertaker完成签到,获得积分10
18秒前
19秒前
大个应助欢喜烧鹅采纳,获得10
21秒前
哭泣觅儿发布了新的文献求助10
21秒前
24秒前
英俊的铭应助1111采纳,获得10
24秒前
24秒前
鱼叔发布了新的文献求助10
25秒前
小蘑菇应助结实傲蕾采纳,获得80
26秒前
HugginBearOuO完成签到,获得积分20
26秒前
my关闭了my文献求助
27秒前
27秒前
嘻嘻应助水心采纳,获得10
27秒前
29秒前
Flow3ry发布了新的文献求助10
30秒前
白云苍狗关注了科研通微信公众号
30秒前
30秒前
传奇3应助zxl采纳,获得10
30秒前
科研通AI6应助留胡子的松采纳,获得10
31秒前
Sigar完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548