MGFFCNN: Two‐dimensional matrix spectroscopy combined with multi‐channel gradient feature fusion convolutional neural network means to diagnose glioma and esophageal cancer patients

特征(语言学) 模式识别(心理学) 拉曼光谱 融合 基质(化学分析) 人工智能 单位矩阵 计算机科学 材料科学 物理 光学 特征向量 量子力学 哲学 语言学 复合材料
作者
Chen Chen,Chunzhi Meng,Yuhua Ma,Min Zhu,Xiaohui Wang,Xiaodong Xie,Cheng Chen
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:54 (4): 385-396 被引量:1
标识
DOI:10.1002/jrs.6502
摘要

Abstract Currently, glioma and esophageal cancer are common malignant tumors worldwide with low cure rate and high mortality rate, and they endanger human health seriously. In this study, we analyzed the correlation and difference between glioma and esophageal cancer through serum mid‐infrared and Raman spectra and established a multi‐channel gradient feature fusion convolutional neural network to achieve rapid diagnosis of glioma and esophageal cancer patients. We transformed the spectra from one‐dimensional matrix to two‐dimensional matrix form separately as the input of the network and fused the features extracted from the Flatten layer of the network. First, we fused the features of mid‐infrared and Raman spectra and constructed a two‐channel gradient feature fusion idea. Then, in order to enrich the learning of features further, we took the first‐order derivative of mid‐infrared and Raman original spectra, respectively, and used the derivative spectra as two channels as well. The mid‐infrared and Raman spectra in two‐dimensional matrix form were fused with their derivative spectral features, respectively, and the fused features were fused again to construct a four‐channel gradient feature fusion network model. Finally, compared with the single original spectrum and the one‐dimensional matrix feature fusion spectrum, the two‐dimensional matrix feature fused spectrum was more advantageous, and the classification accuracy of the model was as high as 99.2% ± 0.7%. This study showed that two‐dimensional matrix spectra combined with multi‐channel gradient feature fusion technique had great potential for rapid and accurate identification of patients with glioma and esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vinecho给vinecho的求助进行了留言
刚刚
杨多多发布了新的文献求助10
刚刚
lm完成签到,获得积分10
刚刚
nanjiluotuo11发布了新的文献求助10
1秒前
Paustino完成签到,获得积分10
2秒前
俏皮的匕发布了新的文献求助10
2秒前
3秒前
善学以致用应助阮红亮采纳,获得30
4秒前
4秒前
CipherSage应助博修采纳,获得10
4秒前
5秒前
追寻柚子完成签到,获得积分10
6秒前
戚薇发布了新的文献求助10
6秒前
小马甲应助勤劳翰采纳,获得10
6秒前
6秒前
limh完成签到,获得积分10
7秒前
7秒前
phobeeee完成签到 ,获得积分10
7秒前
自然1111发布了新的文献求助10
7秒前
q1356478314应助田济采纳,获得10
8秒前
胡图图完成签到,获得积分10
8秒前
8秒前
吕方完成签到,获得积分10
8秒前
10秒前
L-g-b完成签到,获得积分10
10秒前
杨多多完成签到,获得积分10
10秒前
LLLLLL完成签到,获得积分10
10秒前
www完成签到,获得积分10
11秒前
lenon发布了新的文献求助10
11秒前
1111发布了新的文献求助10
12秒前
13秒前
机智傀斗完成签到,获得积分10
13秒前
善良天抒完成签到 ,获得积分20
13秒前
宇宙中心发布了新的文献求助10
13秒前
小蘑菇应助吕方采纳,获得10
13秒前
夙夙发布了新的文献求助10
14秒前
TP完成签到,获得积分10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得20
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650