MSCAF-Net: A General Framework for Camouflaged Object Detection via Learning Multi-Scale Context-Aware Features

计算机科学 人工智能 目标检测 分割 模式识别(心理学) 融合机制 背景(考古学) 图像分割 水准点(测量) 比例(比率) 骨干网 特征提取 计算机视觉 融合 古生物学 计算机网络 语言学 哲学 物理 大地测量学 量子力学 脂质双层融合 生物 地理
作者
Yü Liu,Haihang Li,Juan Cheng,Xun Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4934-4947 被引量:50
标识
DOI:10.1109/tcsvt.2023.3245883
摘要

The aim of camouflaged object detection (COD) is to find objects that are hidden in their surrounding environment. Due to the factors like low illumination, occlusion, small size and high similarity to the background, COD is recognized to be a very challenging task. In this paper, we propose a general COD framework, termed as MSCAF-Net, focusing on learning multi-scale context-aware features. To achieve this target, we first adopt the improved Pyramid Vision Transformer (PVTv2) model as the backbone to extract global contextual information at multiple scales. An enhanced receptive field (ERF) module is then designed to refine the features at each scale. Further, a cross-scale feature fusion (CSFF) module is introduced to achieve sufficient interaction of multi-scale information, aiming to enrich the scale diversity of extracted features. In addition, inspired the mechanism of the human visual system, a dense interactive decoder (DID) module is devised to output a rough localization map, which is used to modulate the fused features obtained in the CSFF module for more accurate detection. The effectiveness of our MSCAF-Net is validated on four benchmark datasets. The results show that the proposed method significantly outperforms state-of-the-art (SOTA) COD models by a large margin. Besides, we also investigate the potential of our MSCAF-Net on some other vision tasks that are highly related to COD, such as polyp segmentation, COVID-19 lung infection segmentation, transparent object detection and defect detection. Experimental results demonstrate the high versatility of the proposed MSCAF-Net. The source code and results of our method are available at https://github.com/yuliu316316/MSCAF-COD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yuanyuan发布了新的文献求助10
1秒前
彬9完成签到,获得积分10
1秒前
weiyajing发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助逸之狐采纳,获得10
3秒前
木头人应助眉间尺采纳,获得10
3秒前
3秒前
thchiang完成签到 ,获得积分10
3秒前
飞先生发布了新的文献求助10
4秒前
shinn发布了新的文献求助10
6秒前
ruyunlong完成签到,获得积分10
8秒前
在下雨完成签到,获得积分10
8秒前
8秒前
田一发布了新的文献求助10
9秒前
liming_li完成签到 ,获得积分10
12秒前
13秒前
丢丢爱学习完成签到,获得积分10
13秒前
14秒前
RATHER发布了新的文献求助10
14秒前
abbyi完成签到,获得积分10
14秒前
可靠的安荷完成签到 ,获得积分10
15秒前
boboking完成签到,获得积分10
17秒前
17秒前
小鹿完成签到,获得积分10
18秒前
顾矜应助臻灏采纳,获得10
18秒前
RATHER完成签到,获得积分10
18秒前
19秒前
21秒前
looklook发布了新的文献求助10
22秒前
lemon发布了新的文献求助10
23秒前
24秒前
25秒前
27秒前
故渊完成签到,获得积分10
27秒前
Zxx应助Coco采纳,获得10
28秒前
棋士应助Coco采纳,获得10
28秒前
xxxx完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303