MSCAF-Net: A General Framework for Camouflaged Object Detection via Learning Multi-Scale Context-Aware Features

计算机科学 人工智能 目标检测 分割 模式识别(心理学) 融合机制 背景(考古学) 图像分割 水准点(测量) 比例(比率) 骨干网 特征提取 计算机视觉 融合 古生物学 计算机网络 语言学 哲学 物理 大地测量学 量子力学 脂质双层融合 生物 地理
作者
Yü Liu,Haihang Li,Juan Cheng,Xun Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4934-4947 被引量:50
标识
DOI:10.1109/tcsvt.2023.3245883
摘要

The aim of camouflaged object detection (COD) is to find objects that are hidden in their surrounding environment. Due to the factors like low illumination, occlusion, small size and high similarity to the background, COD is recognized to be a very challenging task. In this paper, we propose a general COD framework, termed as MSCAF-Net, focusing on learning multi-scale context-aware features. To achieve this target, we first adopt the improved Pyramid Vision Transformer (PVTv2) model as the backbone to extract global contextual information at multiple scales. An enhanced receptive field (ERF) module is then designed to refine the features at each scale. Further, a cross-scale feature fusion (CSFF) module is introduced to achieve sufficient interaction of multi-scale information, aiming to enrich the scale diversity of extracted features. In addition, inspired the mechanism of the human visual system, a dense interactive decoder (DID) module is devised to output a rough localization map, which is used to modulate the fused features obtained in the CSFF module for more accurate detection. The effectiveness of our MSCAF-Net is validated on four benchmark datasets. The results show that the proposed method significantly outperforms state-of-the-art (SOTA) COD models by a large margin. Besides, we also investigate the potential of our MSCAF-Net on some other vision tasks that are highly related to COD, such as polyp segmentation, COVID-19 lung infection segmentation, transparent object detection and defect detection. Experimental results demonstrate the high versatility of the proposed MSCAF-Net. The source code and results of our method are available at https://github.com/yuliu316316/MSCAF-COD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DAN_完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助屹舟采纳,获得10
刚刚
科研通AI5应助一一采纳,获得10
1秒前
隐形的紫菜完成签到,获得积分10
1秒前
23132发布了新的文献求助10
2秒前
cora完成签到,获得积分10
3秒前
放眼天下完成签到 ,获得积分10
4秒前
文毛完成签到,获得积分10
4秒前
4秒前
5秒前
兴奋的问旋完成签到,获得积分10
5秒前
张张完成签到,获得积分10
5秒前
陈文学完成签到,获得积分10
6秒前
一一发布了新的文献求助10
6秒前
bkagyin应助潇洒的冷玉采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
7秒前
芒果完成签到,获得积分10
7秒前
8秒前
cly3397完成签到,获得积分10
8秒前
开心发布了新的文献求助10
8秒前
8秒前
少年发布了新的文献求助10
9秒前
天天快乐应助阿毛采纳,获得10
9秒前
Jenny应助狂野的以珊采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
研友_LMNjkn发布了新的文献求助10
12秒前
ding应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
yizhiGao应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
pinging应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794