计算机科学
降级(电信)
电池(电)
集合(抽象数据类型)
钛酸锂
最佳实践
人气
磷酸铁锂
锂(药物)
工作(物理)
可靠性工程
风险分析(工程)
电极
工程类
锂离子电池
医学
化学
电化学
心理学
机械工程
政治学
电信
物理
法学
量子力学
社会心理学
程序设计语言
功率(物理)
物理化学
内分泌学
作者
Matthieu Dubarry,David Anseán
标识
DOI:10.3389/fenrg.2022.1023555
摘要
This publication will present best practices for incremental capacity analysis, a technique whose popularity is growing year by year because of its ability to identify battery degradation modes for diagnosis and prognosis. While not complicated in principles, the analysis can often feel overwhelming for newcomers because of contradictory information introduced by ill-analyzed datasets. This work aims to summarize and centralize good practices to provide a strong baseline to start a proper analysis. We will provide general comments on the technique and how to avoid the main pitfalls. We will also discuss the best starting points for the most common battery chemistries such as layered oxides, iron phosphate, spinel or blends for positive electrodes and graphite, silicon oxide, or lithium titanate for negative electrodes. Finally, a set of complete synthetic degradation maps for the most common commercially available chemistries will be provided and discussed to serve as guide for future studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI