A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

语音增强 语音识别 计算机科学 语音处理 相关性 网(多面体) 语音活动检测 人工智能 数学 降噪 几何学
作者
Lijun Zhang,Kaikun Pei,Wenbo Li,Dejian Meng,Yikang He
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2015
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech. Firstly, to address the issue of inadequate extraction of multi-scale correlation features from speech signals during feature extraction and reconstruction, a novel dense connection multi-scale feature extraction module based on gated dilated convolution is devised to enhance temporal receptive length and extract diverse scale features effectively. Secondly, in order to tackle the problem of feature loss and harmonic distortion during sampling, a sophisticated pooling-reconstruction fine-grained sampling method based on feature map recombination is proposed. This method aims to minimize information loss during down-sampling while simultaneously enhancing the clarity of reconstructed waveforms during up-sampling. Lastly, leveraging the aforementioned pooling-reconstruction sampling method, we propose a deep supervision approach for multi-scale feature. This approach effective supervision of perception characteristics across different frequency ranges. In order to validate the effectiveness of the proposed framework, experiments were conducted on the Voicebank+Demand dataset. The results show that compared to other advanced algorithms, the proposed model significantly improves metrics such as PESQ, STOI, CSIG, CBAK, and COVL. Even in low SNR environments, the enhanced speech signals exhibit noticeable improvements in quality and intelligibility. This is beneficial for subsequent automotive voice applications.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粉色发布了新的文献求助10
1秒前
uutt发布了新的文献求助150
1秒前
3秒前
杨雨帆发布了新的文献求助10
3秒前
quan完成签到,获得积分20
7秒前
ljhtxf发布了新的文献求助10
7秒前
Xin应助carbon-dots采纳,获得10
9秒前
顾矜应助杨雨帆采纳,获得10
10秒前
12秒前
FashionBoy应助wlnhyF采纳,获得10
13秒前
斯文败类应助6633采纳,获得10
15秒前
那种完成签到,获得积分10
15秒前
pysa完成签到,获得积分10
15秒前
16秒前
Xin完成签到,获得积分20
16秒前
17秒前
彭于晏应助科研通管家采纳,获得10
18秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
19秒前
楠楠完成签到,获得积分10
23秒前
背书强发布了新的文献求助10
24秒前
24秒前
26秒前
朱妮妮完成签到,获得积分10
26秒前
雨渺清空完成签到 ,获得积分10
26秒前
27秒前
27秒前
terence完成签到,获得积分0
28秒前
30秒前
31秒前
31秒前
小宋同学不能怂完成签到 ,获得积分10
32秒前
靓丽紫真发布了新的文献求助10
32秒前
wlnhyF发布了新的文献求助10
32秒前
卡琳完成签到 ,获得积分10
33秒前
34秒前
35秒前
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967