FFYOLO: A Lightweight Forest Fire Detection Model Based on YOLOv8

林业 环境科学 火灾探测 计算机科学 遥感 地理 建筑工程 工程类
作者
Bensheng Yun,Yanan Zheng,Zhenyu Lin,Tao Li
出处
期刊:Fire [MDPI AG]
卷期号:7 (3): 93-93 被引量:6
标识
DOI:10.3390/fire7030093
摘要

Forest is an important resource for human survival, and forest fires are a serious threat to forest protection. Therefore, the early detection of fire and smoke is particularly important. Based on the manually set feature extraction method, the detection accuracy of the machine learning forest fire detection method is limited, and it is unable to deal with complex scenes. Meanwhile, most deep learning methods are difficult to deploy due to high computational costs. To address these issues, this paper proposes a lightweight forest fire detection model based on YOLOv8 (FFYOLO). Firstly, in order to better extract the features of fire and smoke, a channel prior dilatation attention module (CPDA) is proposed. Secondly, the mixed-classification detection head (MCDH), a new detection head, is designed. Furthermore, MPDIoU is introduced to enhance the regression and classification accuracy of the model. Then, in the Neck section, a lightweight GSConv module is applied to reduce parameters while maintaining model accuracy. Finally, the knowledge distillation strategy is used during training stage to enhance the generalization ability of the model and reduce the false detection. Experimental outcomes demonstrate that, in comparison to the original model, FFYOLO realizes an mAP0.5 of 88.8% on a custom forest fire dataset, which is 3.4% better than the original model, with 25.3% lower parameters and 9.3% higher frames per second (FPS).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIU发布了新的文献求助10
刚刚
儒雅的夏翠完成签到,获得积分10
刚刚
打工人221完成签到,获得积分10
刚刚
jdz完成签到 ,获得积分10
1秒前
1秒前
1秒前
领导范儿应助包容的剑采纳,获得10
2秒前
纷纭完成签到,获得积分10
2秒前
3秒前
Lucas应助一大摞钱采纳,获得10
3秒前
乐乐完成签到 ,获得积分10
3秒前
小蘑菇应助jiangnan采纳,获得10
4秒前
乐乐应助小饼干采纳,获得10
4秒前
科研通AI2S应助友好的半仙采纳,获得10
4秒前
风之谷发布了新的文献求助10
4秒前
5秒前
6秒前
chenxin7271发布了新的文献求助10
7秒前
SEveNYS29发布了新的文献求助10
7秒前
7秒前
8秒前
Amber发布了新的文献求助10
8秒前
9秒前
落日余晖完成签到,获得积分10
10秒前
啦啦啦123完成签到,获得积分10
10秒前
半之半发布了新的文献求助30
11秒前
11秒前
mj发布了新的文献求助10
11秒前
华仔应助chenxin7271采纳,获得10
12秒前
13秒前
科研通AI2S应助Amber采纳,获得10
15秒前
15秒前
16秒前
gaogao完成签到,获得积分10
16秒前
17秒前
xch发布了新的文献求助10
17秒前
mj完成签到,获得积分10
18秒前
文静盼兰完成签到,获得积分10
18秒前
科研通AI2S应助Amber采纳,获得10
19秒前
好困应助jam采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491