Electrically controlled nonvolatile switching of single-atom magnetism in a Dy@C84 single-molecule transistor

磁性 晶体管 材料科学 分子 Atom(片上系统) 光电子学 纳米技术 化学 凝聚态物理 物理 电压 计算机科学 有机化学 量子力学 嵌入式系统
作者
Feng Wang,Wangqiang Shen,Yuan Shui,Jun Chen,Huaiqiang Wang,Rui Wang,Yuyuan Qin,Xuefeng Wang,Jing Wan,Minhao Zhang,Xing Lu,Tao Yang,Fengqi Song
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41467-024-46854-z
摘要

Abstract Single-atom magnetism switching is a key technique towards the ultimate data storage density of computer hard disks and has been conceptually realized by leveraging the spin bistability of a magnetic atom under a scanning tunnelling microscope. However, it has rarely been applied to solid-state transistors, an advancement that would be highly desirable for enabling various applications. Here, we demonstrate realization of the electrically controlled Zeeman effect in Dy@C 84 single-molecule transistors, thus revealing a transition in the magnetic moment from 3.8 $${\mu }_{{{{{{\rm{B}}}}}}}$$ μ B to 5.1 $${\mu }_{{{{{{\rm{B}}}}}}}$$ μ B for the ground-state G N at an electric field strength of 3 $$-$$ 10 MV/cm. The consequent magnetoresistance significantly increases from 600% to 1100% at the resonant tunneling point. Density functional theory calculations further corroborate our realization of nonvolatile switching of single-atom magnetism, and the switching stability emanates from an energy barrier of 92 meV for atomic relaxation. These results highlight the potential of using endohedral metallofullerenes for high-temperature, high-stability, high-speed, and compact single-atom magnetic data storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏捷的猪猪侠完成签到,获得积分10
1秒前
1秒前
1秒前
咕噜仔发布了新的文献求助50
1秒前
诚c发布了新的文献求助10
2秒前
2秒前
饭宝发布了新的文献求助10
3秒前
SciGPT应助大胆的期待采纳,获得10
3秒前
奋斗夏烟完成签到,获得积分20
3秒前
气泡水完成签到 ,获得积分10
3秒前
rosy完成签到,获得积分10
4秒前
rjy完成签到 ,获得积分10
4秒前
5秒前
沙111发布了新的文献求助10
5秒前
MADKAI发布了新的文献求助10
5秒前
6秒前
zhoull完成签到 ,获得积分10
6秒前
6秒前
6秒前
学术蝗虫发布了新的文献求助10
6秒前
aurora完成签到,获得积分10
7秒前
bopbopbaby发布了新的文献求助200
7秒前
sll完成签到,获得积分10
7秒前
犹豫的一斩应助迅速冰岚采纳,获得10
7秒前
聂裕铭完成签到 ,获得积分10
7秒前
谦让成协完成签到,获得积分10
8秒前
8秒前
大个应助侦察兵采纳,获得10
8秒前
科研通AI5应助猪猪hero采纳,获得10
8秒前
8秒前
8秒前
WilsonT完成签到,获得积分10
8秒前
SDS发布了新的文献求助10
9秒前
LLL发布了新的文献求助10
9秒前
爆米花应助娜行采纳,获得10
10秒前
10秒前
虫二队长完成签到,获得积分10
10秒前
10秒前
manan发布了新的文献求助10
10秒前
铸一字错完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678