已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SAPFLUXNET: A global database of sap flow measurements

数据库 流量(数学) 计算机科学 物理 机械
作者
Rafael Poyatos,Víctor Granda,Víctor Flo,Roberto Molowny‐Horas,Kathy Steppe,Maurizio Mencuccini,Jordi Martínez‐Vilalta
出处
期刊:CERN European Organization for Nuclear Research - Zenodo 被引量:11
标识
DOI:10.5281/zenodo.3971689
摘要

General description SAPFLUXNET contains a global database of sap flow and environmental data, together with metadata at different levels.
SAPFLUXNET is a harmonised database, compiled from contributions from researchers worldwide. The SAPFLUXNET version 0.1.5 database harbours 202 globally distributed datasets, from 121 geographical locations. SAPFLUXNET contains sap flow data for 2714 individual plants (1584 angiosperms and 1130 gymnosperms), belonging to 174 species (141 angiosperms and 33 gymnosperms), 95 different genera and 45 different families. More information on the database coverage can be found here: http://sapfluxnet.creaf.cat/shiny/sfn_progress_dashboard/.
The SAPFLUXNET project has been developed by researchers at CREAF and other institutions (http://sapfluxnet.creaf.cat/#team), coordinated by Rafael Poyatos (CREAF, http://www.creaf.cat/staff/rafael-poyatos-lopez), and funded by two Spanish Young Researcher's Grants (SAPFLUXNET, CGL2014-55883-JIN; DATAFORUSE, RTI2018-095297-J-I00 ) and an Alexander von Humboldt Research Fellowship for Experienced Researchers). Changelog Compared to version 0.1.4, this version includes some changes in the metadata, but all time series data (sap flow, environmental) remain the same. For all datasets, climate metadata (temperature and precipitation, ‘si_mat’ and ‘si_map’) have been extracted from CHELSA (https://chelsa-climate.org/), replacing the previous climate data obtained with Wordclim. This change has modified the biome classification of the datasets in ‘si_biome’. In ‘species’ metadata, the percentage of basal area with sap flow measurements for each species (‘sp_basal_area_perc’) is now assigned a value of 0 if species are in the understorey. This affects two datasets: AUS_MAR_UBD and AUS_MAR_UBW, where, previously, the sum of species basal area percentages could add up to more than 100%. In ‘species’ metadata, the percentage of basal area with sap flow measurements for each species (‘sp_basal_area_perc’) has been corrected for datasets USA_SIL_OAK_POS, USA_SIL_OAK_1PR, USA_SIL_OAK_2PR. In ‘site’ metadata, the vegetation type (‘si_igbp’) has been changed to SAV for datasets CHN_ARG_GWD and CHN_ARG_GWS. Variables and units SAPFLUXNET contains whole-plant sap flow and environmental variables at sub-daily temporal resolution. Both sap flow and environmental time series have accompanying flags in a data frame, one for sap flow and another for environmental
variables. These flags store quality issues detected during the quality control process and can be used to add further quality flags. Metadata contain relevant variables informing about site conditions, stand characteristics, tree and species attributes, sap flow methodology and details on environmental measurements. The description and units of all data and metadata variables can be found here: Metadata and data units. To learn more about variables, units and data flags please use the functionalities implemented in the sapfluxnetr package (https://github.com/sapfluxnet/sapfluxnetr). In particular, have a look at the package vignettes using R:
# remotes::install_github( # 'sapfluxnet/sapfluxnetr', # build_opts = c("--no-resave-data", "--no-manual", "--build-vignettes") # ) library(sapfluxnetr) # to list all vignettes vignette(package='sapfluxnetr') # variables and units vignette('metadata-and-data-units', package='sapfluxnetr') # data flags vignette('data-flags', package='sapfluxnetr')
Data formats SAPFLUXNET data can be found in two formats: 1) RData files belonging to the custom-built 'sfn_data' class and 2) Text files in .csv format. We recommend using the sfn_data objects together with the sapfluxnetr package, although we also provide the text files for convenience. For each dataset, text files are structured in the same way as the slots of sfn_data objects; if working with text files, we recommend that you check the data structure of 'sfn_data' objects in the corresponding vignette. Working with sfn_data files To work with SAPFLUXNET data, first they have to be downloaded from Zenodo, maintaining the folder structure. A first level in the folder hierarchy corresponds to file format, either RData files or csv's. A second level corresponds to how sap flow is expressed: per plant, per sapwood area or per leaf area. Please note that interconversions among the magnitudes have been performed whenever possible. Below this level, data have been organised per dataset. In the case of RData files, each dataset is contained in a sfn_data object, which stores all data and metadata in different slots (see the vignette 'sfn-data-classes'). In the case of csv files, each dataset has 9 individual files, corresponding to metadata (5), sap flow and environmental data (2) and their corresponding data flags (2). After downloading the entire database, the sapfluxnetr package can be used to:
- Work with data from a single site: data access, plotting and time aggregation.
- Select the subset datasets to work with.
- Work with data from multiple sites: data access, plotting and time aggregation. Please check the following package vignettes to learn more about how to work with sfn_data files: Quick guide Metadata and data units sfn_data classes Custom aggregation Memory and parallelization Working with text files We recommend to work with sfn_data objects using R and the sapfluxnetr package and we do not currently provide code to work with text files. Data issues and reporting Please report any issue you may find in the database by sending us an email: sapfluxnet@creaf.uab.cat. Temporary data fixes, detected but not yet included in released versions will be published in SAPFLUXNET main web page ('Known data errors'). Data access, use and citation This version of the SAPFLUXNET database is open access and corresponds to the data paper submitted to Earth System Science Data in August 2020. When using SAPFLUXNET data in an academic work, please cite the data paper, when available, or alternatively, the Zenodo dataset (see the ‘Cite as’ section on the right panels of this web page).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王桑完成签到 ,获得积分10
1秒前
Leif完成签到 ,获得积分0
3秒前
oupai完成签到,获得积分10
3秒前
7秒前
天真的不评完成签到 ,获得积分10
8秒前
lisu发布了新的文献求助10
11秒前
WUHUIWEN完成签到,获得积分10
12秒前
123发布了新的文献求助30
12秒前
医道无名完成签到,获得积分10
14秒前
ddd发布了新的文献求助10
15秒前
传奇3应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
29秒前
29秒前
lisu完成签到,获得积分10
32秒前
Akim应助苏诗兰采纳,获得10
34秒前
34秒前
半圭为璋完成签到,获得积分10
34秒前
乐乐应助我爱物理采纳,获得10
35秒前
ddd完成签到,获得积分10
35秒前
gao0505完成签到,获得积分10
36秒前
yunyueqixun发布了新的文献求助10
36秒前
带虾的烧麦完成签到,获得积分10
37秒前
阿关完成签到 ,获得积分10
39秒前
研友_VZG7GZ应助lisu采纳,获得10
39秒前
阿槿发布了新的文献求助10
41秒前
43秒前
口外彭于晏完成签到,获得积分10
46秒前
sugarmei完成签到,获得积分10
47秒前
苏诗兰发布了新的文献求助10
49秒前
sugarmei发布了新的文献求助10
51秒前
AZQ完成签到,获得积分10
53秒前
小象完成签到,获得积分10
53秒前
123完成签到,获得积分20
54秒前
佳佳应助阿槿采纳,获得10
56秒前
Bighen完成签到 ,获得积分0
56秒前
57秒前
苏诗兰完成签到,获得积分10
1分钟前
123123完成签到 ,获得积分10
1分钟前
阿槿完成签到,获得积分20
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629