清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning model based on RCA-PDCA nursing methods and differentiating factors to predict hypotension during cesarean section surgery

PDCA公司 医学 焦虑 入射(几何) 麻醉 并发症 外科 质量管理 运营管理 物理 管理制度 精神科 经济 光学
作者
Xue Yang,Yumei Li,Qiong Wang,Run Li,Ping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108395-108395 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108395
摘要

Intraoperative hypotension during cesarean section has become a serious complication for maternal and fetal healthy. It is commonly encountered by subarachnoid anesthesia. However, currently used control methods have varying degrees of side effects, such as drugs. The Root Cause Analysis (RCA) - Plan, Do, Check, Act (PDCA) is a new model of care that identifies the root causes of problems. The study aimed to demonstrate the usefulness of RCA-PDCA nursing methods in preventing intraoperative hypotension during cesarean section and to predict the occurrence of intraoperative hypotension through a machine learning model. Patients who underwent cesarean section at Traditional Chinese Medicine of Southwest Medical University from January 2023 to December 2023 were retrospectively screened, and the data of their gestational times, age, height, weight, history of allergies, intraoperative vital signs, fetal condition, operative time, fluid out and in, adverse effects, use of vasopressor drugs, anxiety-depression-pain scores, and satisfaction were collected and analyzed. The statistically different features were screened and five machine learning models were used as predictive models to assess the usefulness of the RCA-PDCA model of care. (1) Compared with the general nursing model, the RCA-PDCA nursing model significantly reduces the incidence of intraoperative hypotension and postoperative complications in cesarean delivery, and the patient experience is comfortable and satisfactory. (2) Among the five machine learning models, the RF model has the best predictive performance, and the accuracy of the random forest model in preventing intraoperative hypotension is as high as 90%. Through computer machine learning model analysis, we prove the importance of the RCA-PDCA nursing method in the prevention of intraoperative hypotension during cesarean section, especially the Random Forest model which performed well and promoted the application of artificial intelligence computer learning methods in the field of medical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助帮帮我好吗采纳,获得10
7秒前
Kevin完成签到,获得积分10
8秒前
violetlishu完成签到 ,获得积分10
45秒前
无悔完成签到 ,获得积分10
1分钟前
1分钟前
颖宝老公发布了新的文献求助10
1分钟前
Singularity应助帮帮我好吗采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
毕个业完成签到 ,获得积分10
2分钟前
SciKid524完成签到 ,获得积分10
2分钟前
zhdjj完成签到 ,获得积分10
2分钟前
科研通AI2S应助Migue采纳,获得10
2分钟前
是猪不是猫完成签到,获得积分10
2分钟前
JL完成签到 ,获得积分10
3分钟前
Hasee完成签到 ,获得积分10
3分钟前
Singularity举报繁馥然求助涉嫌违规
3分钟前
3分钟前
阿巴完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
CodeCraft应助lll采纳,获得10
5分钟前
Jenny发布了新的文献求助10
5分钟前
隐形曼青应助石乘云采纳,获得10
5分钟前
5分钟前
hh完成签到 ,获得积分10
6分钟前
DJ_Tokyo完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
石乘云发布了新的文献求助10
6分钟前
草木完成签到,获得积分10
6分钟前
Singularity应助帮帮我好吗采纳,获得10
6分钟前
大轩完成签到 ,获得积分10
7分钟前
唐画完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999