Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma

阿达布思 机器学习 人工智能 接收机工作特性 算法 随机森林 朴素贝叶斯分类器 计算机科学 支持向量机 肾透明细胞癌 多层感知器 医学 肿瘤科 肾细胞癌 人工神经网络
作者
Qin‐Hua Guo,Feng‐Chun Xie,Fangmin Zhong,Wen Wen,Xue‐Ru Zhang,Xia‐Jing Yu,Xinlu Wang,Bo Huang,Liping Li,Xiaozhong Wang
出处
期刊:Cancer Medicine [Wiley]
卷期号:13 (7) 被引量:2
标识
DOI:10.1002/cam4.7161
摘要

Abstract Background Ovarian clear cell carcinoma (OCCC) represents a subtype of ovarian epithelial carcinoma (OEC) known for its limited responsiveness to chemotherapy, and the onset of distant metastasis significantly impacts patient prognoses. This study aimed to identify potential risk factors contributing to the occurrence of distant metastasis in OCCC. Methods Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, we identified patients diagnosed with OCCC between 2004 and 2015. The most influential factors were selected through the application of Gaussian Naive Bayes (GNB) and Adaboost machine learning algorithms, employing a Venn test for further refinement. Subsequently, six machine learning (ML) techniques, namely XGBoost, LightGBM, Random Forest (RF), Adaptive Boosting (Adaboost), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), were employed to construct predictive models for distant metastasis. Shapley Additive Interpretation (SHAP) analysis facilitated a visual interpretation for individual patient. Model validity was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and the area under the receiver operating characteristic curve (AUC). Results In the realm of predicting distant metastasis, the Random Forest (RF) model outperformed the other five machine learning algorithms. The RF model demonstrated accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and AUC (95% CI) values of 0.792 (0.762–0.823), 0.904 (0.835–0.973), 0.759 (0.731–0.787), 0.221 (0.186–0.256), 0.974 (0.967–0.982), 0.353 (0.306–0.399), and 0.834 (0.696–0.967), respectively, surpassing the performance of other models. Additionally, the calibration curve's Brier Score (95%) for the RF model reached the minimum value of 0.06256 (0.05753–0.06759). SHAP analysis provided independent explanations, reaffirming the critical clinical factors associated with the risk of metastasis in OCCC patients. Conclusions This study successfully established a precise predictive model for OCCC patient metastasis using machine learning techniques, offering valuable support to clinicians in making informed clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fei菲飞完成签到,获得积分10
刚刚
缓慢的冬云完成签到,获得积分10
刚刚
来自三百发布了新的文献求助10
刚刚
momo发布了新的文献求助10
1秒前
Haibara5关注了科研通微信公众号
1秒前
biubiu完成签到,获得积分10
2秒前
bjglp完成签到,获得积分10
2秒前
微风完成签到,获得积分10
2秒前
三只眼小怪兽完成签到,获得积分10
3秒前
AJ完成签到 ,获得积分10
5秒前
蒲公英完成签到 ,获得积分10
5秒前
勤劳绿毛龟完成签到,获得积分10
5秒前
雷欧奥特曼完成签到,获得积分10
5秒前
hq完成签到,获得积分10
5秒前
gao完成签到 ,获得积分0
5秒前
hunajx完成签到,获得积分10
5秒前
开心的若烟完成签到,获得积分10
6秒前
来自三百发布了新的文献求助10
6秒前
研友_LMpo68完成签到 ,获得积分10
6秒前
好的昂完成签到,获得积分10
7秒前
Ygy完成签到,获得积分10
7秒前
fann完成签到 ,获得积分10
7秒前
梨梨完成签到,获得积分10
8秒前
auraLyV完成签到,获得积分10
9秒前
科研通AI5应助子车谷波采纳,获得10
10秒前
鹏N完成签到,获得积分10
11秒前
文心同学完成签到,获得积分0
11秒前
zp6666tql完成签到 ,获得积分10
11秒前
断水断粮的科研民工完成签到,获得积分10
11秒前
ff0110完成签到,获得积分10
11秒前
彭于晏应助勤劳绿毛龟采纳,获得10
11秒前
orixero应助勤劳绿毛龟采纳,获得10
12秒前
哈喽完成签到,获得积分10
12秒前
唐唐完成签到 ,获得积分10
13秒前
皓月星辰完成签到,获得积分10
14秒前
鹿叽叽完成签到,获得积分10
14秒前
佳佳应助JIE采纳,获得10
15秒前
xiangzq完成签到,获得积分10
17秒前
胖宏完成签到 ,获得积分10
18秒前
拼搏尔风完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671