Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma

阿达布思 机器学习 人工智能 接收机工作特性 算法 随机森林 朴素贝叶斯分类器 计算机科学 支持向量机 肾透明细胞癌 多层感知器 医学 肿瘤科 肾细胞癌 人工神经网络
作者
Qin‐Hua Guo,Feng‐Chun Xie,Fangmin Zhong,Wen Wen,Xue‐Ru Zhang,Xia‐Jing Yu,Xinlu Wang,Bo Huang,Liping Li,Xiaozhong Wang
出处
期刊:Cancer Medicine [Wiley]
卷期号:13 (7) 被引量:2
标识
DOI:10.1002/cam4.7161
摘要

Abstract Background Ovarian clear cell carcinoma (OCCC) represents a subtype of ovarian epithelial carcinoma (OEC) known for its limited responsiveness to chemotherapy, and the onset of distant metastasis significantly impacts patient prognoses. This study aimed to identify potential risk factors contributing to the occurrence of distant metastasis in OCCC. Methods Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, we identified patients diagnosed with OCCC between 2004 and 2015. The most influential factors were selected through the application of Gaussian Naive Bayes (GNB) and Adaboost machine learning algorithms, employing a Venn test for further refinement. Subsequently, six machine learning (ML) techniques, namely XGBoost, LightGBM, Random Forest (RF), Adaptive Boosting (Adaboost), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), were employed to construct predictive models for distant metastasis. Shapley Additive Interpretation (SHAP) analysis facilitated a visual interpretation for individual patient. Model validity was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and the area under the receiver operating characteristic curve (AUC). Results In the realm of predicting distant metastasis, the Random Forest (RF) model outperformed the other five machine learning algorithms. The RF model demonstrated accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and AUC (95% CI) values of 0.792 (0.762–0.823), 0.904 (0.835–0.973), 0.759 (0.731–0.787), 0.221 (0.186–0.256), 0.974 (0.967–0.982), 0.353 (0.306–0.399), and 0.834 (0.696–0.967), respectively, surpassing the performance of other models. Additionally, the calibration curve's Brier Score (95%) for the RF model reached the minimum value of 0.06256 (0.05753–0.06759). SHAP analysis provided independent explanations, reaffirming the critical clinical factors associated with the risk of metastasis in OCCC patients. Conclusions This study successfully established a precise predictive model for OCCC patient metastasis using machine learning techniques, offering valuable support to clinicians in making informed clinical decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HCT完成签到,获得积分10
刚刚
刚刚
刚刚
limerence发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助玥越采纳,获得10
1秒前
1chen完成签到 ,获得积分10
1秒前
2秒前
刘霆勋发布了新的文献求助10
2秒前
哪位完成签到,获得积分10
2秒前
风吹麦田应助fish采纳,获得100
3秒前
fnuew发布了新的文献求助10
3秒前
JIANGSHUI发布了新的文献求助10
4秒前
林深完成签到,获得积分10
4秒前
风清扬发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
山雷发布了新的文献求助10
4秒前
Sylvia完成签到,获得积分10
5秒前
struggle完成签到,获得积分20
5秒前
科研小尹发布了新的文献求助10
5秒前
齐天大圣完成签到,获得积分10
6秒前
禹宛白发布了新的文献求助10
6秒前
jhonnyhuang发布了新的文献求助10
7秒前
7秒前
JIANGSHUI完成签到,获得积分10
8秒前
万金油完成签到 ,获得积分10
8秒前
老王爱学习完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
Kia发布了新的文献求助30
11秒前
GUKGO完成签到,获得积分10
12秒前
limerence完成签到,获得积分10
12秒前
汉堡包应助风轩轩采纳,获得10
12秒前
林深时见鹿完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802