Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma

阿达布思 机器学习 人工智能 接收机工作特性 算法 随机森林 朴素贝叶斯分类器 计算机科学 支持向量机 肾透明细胞癌 多层感知器 医学 肿瘤科 肾细胞癌 人工神经网络
作者
Qin‐Hua Guo,Feng‐Chun Xie,Fangmin Zhong,Wen Wen,Xue‐Ru Zhang,Xia‐Jing Yu,Xinlu Wang,Bo Huang,Liping Li,Xiaozhong Wang
出处
期刊:Cancer Medicine [Wiley]
卷期号:13 (7) 被引量:2
标识
DOI:10.1002/cam4.7161
摘要

Abstract Background Ovarian clear cell carcinoma (OCCC) represents a subtype of ovarian epithelial carcinoma (OEC) known for its limited responsiveness to chemotherapy, and the onset of distant metastasis significantly impacts patient prognoses. This study aimed to identify potential risk factors contributing to the occurrence of distant metastasis in OCCC. Methods Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, we identified patients diagnosed with OCCC between 2004 and 2015. The most influential factors were selected through the application of Gaussian Naive Bayes (GNB) and Adaboost machine learning algorithms, employing a Venn test for further refinement. Subsequently, six machine learning (ML) techniques, namely XGBoost, LightGBM, Random Forest (RF), Adaptive Boosting (Adaboost), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), were employed to construct predictive models for distant metastasis. Shapley Additive Interpretation (SHAP) analysis facilitated a visual interpretation for individual patient. Model validity was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and the area under the receiver operating characteristic curve (AUC). Results In the realm of predicting distant metastasis, the Random Forest (RF) model outperformed the other five machine learning algorithms. The RF model demonstrated accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and AUC (95% CI) values of 0.792 (0.762–0.823), 0.904 (0.835–0.973), 0.759 (0.731–0.787), 0.221 (0.186–0.256), 0.974 (0.967–0.982), 0.353 (0.306–0.399), and 0.834 (0.696–0.967), respectively, surpassing the performance of other models. Additionally, the calibration curve's Brier Score (95%) for the RF model reached the minimum value of 0.06256 (0.05753–0.06759). SHAP analysis provided independent explanations, reaffirming the critical clinical factors associated with the risk of metastasis in OCCC patients. Conclusions This study successfully established a precise predictive model for OCCC patient metastasis using machine learning techniques, offering valuable support to clinicians in making informed clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野元枫完成签到 ,获得积分10
1秒前
ruochenzu发布了新的文献求助10
4秒前
大葱鸭发布了新的文献求助10
4秒前
ABC完成签到,获得积分20
6秒前
原本发布了新的文献求助10
6秒前
dzy完成签到,获得积分20
7秒前
amber完成签到 ,获得积分10
7秒前
Green完成签到,获得积分10
9秒前
10秒前
小木子完成签到,获得积分10
12秒前
舟遥遥完成签到,获得积分10
13秒前
华仔应助大橙子采纳,获得10
15秒前
桐桐应助Bismarck采纳,获得10
19秒前
CLY完成签到,获得积分10
20秒前
21秒前
rita_sun1969完成签到,获得积分10
22秒前
研友_8K2QJZ完成签到,获得积分10
22秒前
蝴蝶完成签到 ,获得积分10
23秒前
ARIA完成签到 ,获得积分10
23秒前
大橙子发布了新的文献求助10
26秒前
Bismarck完成签到,获得积分20
27秒前
27秒前
爱笑子默完成签到,获得积分10
28秒前
28秒前
一点完成签到,获得积分10
30秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
30秒前
DezhaoWang完成签到,获得积分10
31秒前
知犯何逆发布了新的文献求助10
32秒前
原本完成签到,获得积分10
32秒前
Bismarck发布了新的文献求助10
33秒前
苗条丹南完成签到 ,获得积分10
35秒前
yu完成签到 ,获得积分10
38秒前
skyleon完成签到,获得积分10
38秒前
无心的天真完成签到 ,获得积分10
39秒前
Engen完成签到,获得积分20
39秒前
40秒前
学术小垃圾完成签到,获得积分10
40秒前
dreamwalk完成签到 ,获得积分10
40秒前
黄淮科研小白龙完成签到 ,获得积分10
41秒前
齐嫒琳完成签到,获得积分10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022