Hybrid Visual Servoing Control of a Soft Robot With Compliant Obstacle Avoidance

视觉伺服 避障 计算机视觉 人工智能 计算机科学 机器人 障碍物 移动机器人 地理 考古
作者
Fan Xu,X D Kang,Hesheng Wang
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tmech.2024.3377632
摘要

Soft robots demonstrate endowment in reducing unexpected impaction effects due to the compliant mechanism. This characteristic makes it possible to meet the safety demand even though contacts are generated between the robot and the external, making soft robots more competent with tasks in unstructured and interactive environments compared to their rigid counterparts. To drive a robot to execute in a constrained environment, conventional methods usually require preknowledge of the environment to plan the path that avoids obstacles, and deliberately control the motion of the robot. This article investigates the vision-based control problem of a soft robot in unknown constrained environments. Considering the unique characteristics of a soft robot, complete obstacle-avoiding motion is sometimes too conservative and may degrade the performance. Instead, this article proposes a compliant obstacle-avoiding (COA) algorithm, taking contact forces as a metric to evaluate whether the robot is under safe interaction. And if not, the optimization mechanism is designed based on the idea borrowed from the control barrier function to actively adjust the controls to ensure safety without impeding positioning performance. The proposed algorithm has experimentally validated the performance of visual servoing and COA in an eight-tendon driving soft robot platform. The results indicate that the controller can ensure good positioning accuracy, with the final image error converging to the subpixel scale. Meanwhile, the controller guarantees safety during the interaction as evidenced by the contact forces consistently remaining within the predefined allowable set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
石栾完成签到,获得积分10
1秒前
哈哈完成签到 ,获得积分10
1秒前
耶格尔发布了新的文献求助10
1秒前
醉爱吃小孩完成签到,获得积分10
1秒前
小二郎应助cloudyick采纳,获得30
1秒前
ohh发布了新的文献求助10
2秒前
小于发布了新的文献求助10
2秒前
思源应助sclzl采纳,获得10
2秒前
3秒前
3秒前
3秒前
Shelton发布了新的文献求助10
3秒前
4秒前
FashionBoy应助LLLZX采纳,获得10
5秒前
catch完成签到,获得积分10
5秒前
yancey发布了新的文献求助10
5秒前
lan完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
大个应助Warten995采纳,获得10
7秒前
tesla发布了新的文献求助10
8秒前
木棉完成签到,获得积分10
8秒前
杨某某完成签到,获得积分10
8秒前
顾矜应助弄井采纳,获得10
8秒前
Jasper应助konghuihui采纳,获得30
8秒前
9秒前
9秒前
9秒前
哈哈哈发布了新的文献求助10
10秒前
火星上的远航完成签到,获得积分20
10秒前
11秒前
12秒前
12秒前
rocine完成签到 ,获得积分10
12秒前
CyrusSo524应助暮霭沉沉采纳,获得50
12秒前
李健应助Shelton采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267