已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large Language Models and the Argument from the Poverty of the Stimulus

语言学 论证(复杂分析) 刺激(心理学) 心理学 哲学 认知心理学 医学 内科学
作者
Nur Lan,Emmanuel Chemla,Roni Katzir
出处
期刊:Linguistic Inquiry [The MIT Press]
卷期号:: 1-28 被引量:1
标识
DOI:10.1162/ling_a_00533
摘要

According to much of theoretical linguistics, a fair amount of our linguistic knowledge is innate. One of the best-known (and most contested) kinds of evidence for a large innate endowment is the argument from the poverty of the stimulus (APS). An APS obtains when human learners systematically make inductive leaps that are not warranted by the linguistic evidence. A weakness of the APS has been that it is very hard to assess what is warranted by the linguistic evidence. Current artificial neural networks appear to offer a handle on this challenge, and a growing literature has started to explore the potential implications of such models to questions of innateness. We focus on Wilcox, Futrell, and Levy’s (2024) use of several different networks to examine the available evidence as it pertains to wh-movement, including island constraints. WFL conclude that the (presumably linguistically neutral) networks acquire an adequate knowledge of wh-movement, thus undermining an APS in this domain. We examine the evidence further, looking in particular at parasitic gaps and across-the-board movement, and argue that current networks do not succeed in acquiring or even adequately approximating wh-movement from training corpora roughly the size of the linguistic input that children receive. We also show that the performance of one of the models improves considerably when the training data are artificially enriched with instances of parasitic gaps and across-the-board movement. This finding suggests, albeit tentatively, that the networks’ failure when trained on natural, unenriched corpora is due to the insufficient richness of the linguistic input, thus supporting the APS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
冷静傲丝完成签到 ,获得积分10
5秒前
sigrid完成签到,获得积分10
6秒前
包子完成签到,获得积分10
7秒前
wbqdssl完成签到 ,获得积分10
11秒前
知足的憨人*-*完成签到,获得积分10
13秒前
momo应助桀桀桀采纳,获得10
13秒前
azhou176完成签到,获得积分10
14秒前
lucky完成签到 ,获得积分10
14秒前
丸子完成签到 ,获得积分10
14秒前
chestnut灬完成签到 ,获得积分10
15秒前
01259完成签到 ,获得积分10
15秒前
喜悦香薇完成签到 ,获得积分10
15秒前
18秒前
1230完成签到 ,获得积分10
19秒前
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
白桦林泪完成签到,获得积分10
21秒前
yangzai完成签到 ,获得积分10
22秒前
24秒前
自然千山完成签到,获得积分10
24秒前
Augusterny完成签到 ,获得积分10
25秒前
YBR完成签到 ,获得积分10
26秒前
hellokitty发布了新的文献求助10
27秒前
白桦林泪发布了新的文献求助20
27秒前
27秒前
懵懂的冰凡完成签到,获得积分10
28秒前
知足的憨人丫丫完成签到,获得积分10
28秒前
不吃汉堡完成签到 ,获得积分10
31秒前
32秒前
32秒前
xx完成签到 ,获得积分10
34秒前
36秒前
乐乐乐乐乐乐应助duohao2023采纳,获得30
36秒前
37秒前
lizigongzhu发布了新的文献求助10
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216