Large Language Models and the Argument from the Poverty of the Stimulus

语言学 论证(复杂分析) 刺激(心理学) 心理学 哲学 认知心理学 医学 内科学
作者
Nur Lan,Emmanuel Chemla,Roni Katzir
出处
期刊:Linguistic Inquiry [MIT Press]
卷期号:: 1-28 被引量:1
标识
DOI:10.1162/ling_a_00533
摘要

According to much of theoretical linguistics, a fair amount of our linguistic knowledge is innate. One of the best-known (and most contested) kinds of evidence for a large innate endowment is the argument from the poverty of the stimulus (APS). An APS obtains when human learners systematically make inductive leaps that are not warranted by the linguistic evidence. A weakness of the APS has been that it is very hard to assess what is warranted by the linguistic evidence. Current artificial neural networks appear to offer a handle on this challenge, and a growing literature has started to explore the potential implications of such models to questions of innateness. We focus on Wilcox, Futrell, and Levy’s (2024) use of several different networks to examine the available evidence as it pertains to wh-movement, including island constraints. WFL conclude that the (presumably linguistically neutral) networks acquire an adequate knowledge of wh-movement, thus undermining an APS in this domain. We examine the evidence further, looking in particular at parasitic gaps and across-the-board movement, and argue that current networks do not succeed in acquiring or even adequately approximating wh-movement from training corpora roughly the size of the linguistic input that children receive. We also show that the performance of one of the models improves considerably when the training data are artificially enriched with instances of parasitic gaps and across-the-board movement. This finding suggests, albeit tentatively, that the networks’ failure when trained on natural, unenriched corpora is due to the insufficient richness of the linguistic input, thus supporting the APS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yifan2024应助jiaojiao采纳,获得30
2秒前
科研通AI2S应助Jim采纳,获得10
2秒前
赘婿应助张涛采纳,获得10
4秒前
skyinner完成签到 ,获得积分10
4秒前
Roy发布了新的文献求助30
5秒前
wke发布了新的文献求助10
6秒前
关显锋完成签到,获得积分10
7秒前
9秒前
璐璐完成签到 ,获得积分10
9秒前
asdasdas完成签到,获得积分10
11秒前
小马甲应助wengi94采纳,获得10
11秒前
Ava应助贾败采纳,获得10
12秒前
asdasdas发布了新的文献求助10
14秒前
14秒前
大大大大管子完成签到 ,获得积分10
15秒前
18秒前
起风了发布了新的文献求助10
18秒前
德鲁猪发布了新的文献求助10
20秒前
wengi94发布了新的文献求助10
23秒前
25秒前
杳鸢应助jiaojiao采纳,获得10
25秒前
小白完成签到 ,获得积分10
25秒前
要减肥的乐双完成签到 ,获得积分10
26秒前
28秒前
Angelina发布了新的文献求助10
30秒前
34秒前
小犁牛完成签到 ,获得积分10
34秒前
wke发布了新的文献求助10
35秒前
西风驿马完成签到,获得积分10
36秒前
skyyy完成签到 ,获得积分10
38秒前
化工牛马发布了新的文献求助20
39秒前
彩色的芷容完成签到 ,获得积分10
40秒前
小蘑菇应助起风了采纳,获得10
42秒前
领导范儿应助科研通管家采纳,获得10
47秒前
Candice应助科研通管家采纳,获得10
47秒前
在水一方应助科研通管家采纳,获得10
47秒前
科目三应助科研通管家采纳,获得30
47秒前
48秒前
50秒前
田田田田完成签到,获得积分10
51秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376345
求助须知:如何正确求助?哪些是违规求助? 2992492
关于积分的说明 8751050
捐赠科研通 2676830
什么是DOI,文献DOI怎么找? 1466249
科研通“疑难数据库(出版商)”最低求助积分说明 678240
邀请新用户注册赠送积分活动 669843