Large Language Models and the Argument from the Poverty of the Stimulus

语言学 论证(复杂分析) 刺激(心理学) 心理学 哲学 认知心理学 医学 内科学
作者
Nur Lan,Emmanuel Chemla,Roni Katzir
出处
期刊:Linguistic Inquiry [The MIT Press]
卷期号:: 1-28 被引量:1
标识
DOI:10.1162/ling_a_00533
摘要

According to much of theoretical linguistics, a fair amount of our linguistic knowledge is innate. One of the best-known (and most contested) kinds of evidence for a large innate endowment is the argument from the poverty of the stimulus (APS). An APS obtains when human learners systematically make inductive leaps that are not warranted by the linguistic evidence. A weakness of the APS has been that it is very hard to assess what is warranted by the linguistic evidence. Current artificial neural networks appear to offer a handle on this challenge, and a growing literature has started to explore the potential implications of such models to questions of innateness. We focus on Wilcox, Futrell, and Levy’s (2024) use of several different networks to examine the available evidence as it pertains to wh-movement, including island constraints. WFL conclude that the (presumably linguistically neutral) networks acquire an adequate knowledge of wh-movement, thus undermining an APS in this domain. We examine the evidence further, looking in particular at parasitic gaps and across-the-board movement, and argue that current networks do not succeed in acquiring or even adequately approximating wh-movement from training corpora roughly the size of the linguistic input that children receive. We also show that the performance of one of the models improves considerably when the training data are artificially enriched with instances of parasitic gaps and across-the-board movement. This finding suggests, albeit tentatively, that the networks’ failure when trained on natural, unenriched corpora is due to the insufficient richness of the linguistic input, thus supporting the APS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人发布了新的文献求助10
刚刚
刚刚
魏莱关注了科研通微信公众号
1秒前
dd发布了新的文献求助10
2秒前
yifan92完成签到,获得积分10
3秒前
4秒前
灵巧的孤容完成签到,获得积分10
5秒前
袁翰将军发布了新的文献求助10
5秒前
a雪橙完成签到 ,获得积分10
7秒前
超帅的碱完成签到,获得积分10
7秒前
8秒前
陈大海完成签到,获得积分20
8秒前
LaTeXer给积极行天的求助进行了留言
8秒前
白斯特完成签到,获得积分10
9秒前
科研混子完成签到,获得积分10
9秒前
听雨完成签到 ,获得积分10
9秒前
jianglili完成签到 ,获得积分10
9秒前
思源应助王云骢采纳,获得10
10秒前
等待的航空完成签到 ,获得积分10
11秒前
顾矜应助乔安采纳,获得10
11秒前
雪ノ下詩乃完成签到,获得积分10
12秒前
神外之城发布了新的文献求助80
12秒前
科研人完成签到,获得积分10
14秒前
莫友安完成签到 ,获得积分10
14秒前
大个应助迅速曼冬采纳,获得10
15秒前
热心市民小红花应助阿湫采纳,获得10
16秒前
快乐战神没烦恼完成签到,获得积分10
16秒前
顾矜应助魏莱采纳,获得10
16秒前
SYLH应助Rollei采纳,获得10
16秒前
17秒前
dd完成签到,获得积分20
17秒前
刻苦羽毛完成签到,获得积分10
18秒前
小粒橙完成签到 ,获得积分10
19秒前
lulu完成签到,获得积分10
22秒前
凤里完成签到 ,获得积分10
22秒前
星辰大海应助虹虹采纳,获得10
22秒前
25秒前
25秒前
cassie完成签到,获得积分10
25秒前
兴奋的乐巧完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048