计算机科学
注释
概率逻辑
转录组
计算生物学
情报检索
万维网
人工智能
生物
基因
基因表达
遗传学
作者
Yuqiu Zhou,He Wang,Weixin Hou,Ying Zhu
标识
DOI:10.1038/s41467-024-47152-4
摘要
Abstract Spatial transcriptomics has revolutionized the study of gene expression within tissues, while preserving spatial context. However, annotating spatial spots’ biological identity remains a challenge. To tackle this, we introduce Pianno, a Bayesian framework automating structural semantics annotation based on marker genes. Comprehensive evaluations underscore Pianno’s remarkable prowess in precisely annotating a wide array of spatial semantics, ranging from diverse anatomical structures to intricate tumor microenvironments, as well as in estimating cell type distributions, across data generated from various spatial transcriptomics platforms. Furthermore, Pianno, in conjunction with clustering approaches, uncovers a region- and species-specific excitatory neuron subtype in the deep layer 3 of the human neocortex, shedding light on cellular evolution in the human neocortex. Overall, Pianno equips researchers with a robust and efficient tool for annotating diverse biological structures, offering new perspectives on spatial transcriptomics data.
科研通智能强力驱动
Strongly Powered by AbleSci AI