Prediction of Depth of Defect from Phased Array Ultrasonic Testing Data Using Neural Network

相控阵 人工神经网络 超声波传感器 相控阵超声 声学 超声波检测 计算机科学 人工智能 电信 物理 天线(收音机)
作者
Samir B. Kumbhar,T. Sonamani Singh
出处
期刊:Lecture notes in mechanical engineering 卷期号:: 109-119
标识
DOI:10.1007/978-981-97-0918-2_9
摘要

Ultrasonic non-destructive testing (NDT) requires the involvement of an expert operator for inspection and interpretation. This makes the process outcome sensitive to multiple forms of human error, leading to inaccuracy in results. The present demands of society have increased the volume of inspection and testing costs exponentially. The potential solution to these problems is to use machine learning (ML), and recently researchers and industries have started exploring the diversity of ML techniques to use in NDT. This paper investigates the prospect of the artificial neural network (ANN) to characterize the defect in NDT through simulation and experiment. First, synthetic A-scan data was generated from an angle beam ultrasonic model using COMSOL, and using these data the depth of the defect was characterized using a feed-forward neural network. It is found that a simple topology of 10:10:2 network performs well and gives a correlation coefficient of 0.95 between the output and target. Second, an experiment was performed by preparing samples (mild steel blocks) with artificial defects at different depths. The depth characterization was performed by extracting the features from A-scan data using a phased array ultrasonic testing (PAUT) device. The result shows that the feed-forward network can predict the depth of defect with a mean squared error of 0.0701.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
香蕉觅云应助束负允三金采纳,获得10
1秒前
冷静如柏完成签到,获得积分10
2秒前
愛研究完成签到,获得积分10
2秒前
Kashing完成签到,获得积分10
3秒前
华仔应助渡水寻彼岸采纳,获得10
3秒前
研友_VZG7GZ应助lilili采纳,获得10
3秒前
xiang完成签到,获得积分10
4秒前
star009完成签到,获得积分10
4秒前
sallyshe发布了新的文献求助10
5秒前
刘wt完成签到,获得积分10
5秒前
llee2005完成签到,获得积分10
5秒前
whm发布了新的文献求助10
5秒前
5秒前
小离心机完成签到,获得积分10
6秒前
6秒前
酷波er应助清澜庭采纳,获得10
6秒前
tramp应助霸气的连虎采纳,获得10
6秒前
Fuffu完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
刘wt发布了新的文献求助10
8秒前
8秒前
gapsong完成签到,获得积分10
8秒前
Jilin发布了新的文献求助20
9秒前
10秒前
SYLH应助yy采纳,获得10
10秒前
泡泡完成签到,获得积分10
10秒前
岑岑完成签到,获得积分10
10秒前
zouzou发布了新的文献求助10
10秒前
whm完成签到,获得积分10
11秒前
Lucas应助bofu采纳,获得10
11秒前
米奇妙妙屋完成签到,获得积分20
11秒前
她说给了又怎样完成签到,获得积分20
12秒前
g_f发布了新的文献求助10
12秒前
蚝油盗梨完成签到 ,获得积分10
12秒前
xiaofeng发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128