超参数
计算机科学
系列(地层学)
人工智能
概率逻辑
时间序列
机器学习
古生物学
生物
作者
Kiran Madhusudhanan,Shayan Jawed,Lars Schmidt-Thieme
标识
DOI:10.1007/978-981-97-2266-2_21
摘要
Time series forecasting attempts to predict future events by analyzing past trends and patterns. Although well researched, certain critical aspects pertaining to the use of deep learning in time series forecasting remain ambiguous. Our research primarily focuses on examining the impact of specific hyperparameters related to time series, such as context length and validation strategy, on the performance of the state-of-the-art MLP model in time series forecasting. We have conducted a comprehensive series of experiments involving 4800 configurations per dataset across 20 time series forecasting datasets, and our findings demonstrate the importance of tuning these parameters. Furthermore, in this work, we introduce the largest metadataset for time series forecasting to date, named TSBench, comprising 97200 evaluations, which is a twentyfold increase compared to previous works in the field. Finally, we demonstrate the utility of the created metadataset on multi-fidelity hyperparameter optimization tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI