清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Strain rate-dependent tensile deformation and failure behavior in single-crystal β-Sn

材料科学 变形(气象学) 拉伤 极限抗拉强度 应变率 复合材料 拉伸应变 单晶 结晶学 医学 内科学 化学
作者
Tianhao Yu,Yabin Yan,Fu‐Zhen Xuan
出处
期刊:Modern Physics Letters B [World Scientific]
标识
DOI:10.1142/s0217984924503147
摘要

Given that electronic components often undergo intricate thermal and mechanical loads during operation, comprehensively understanding lead-free solder, particularly solder based on [Formula: see text]-Sn, in various complex load conditions, plays a crucial role in ensuring the structural integrity and functional reliability of integrated circuits. Therefore, investigating the mechanical properties and fracture behavior of [Formula: see text]-Sn as a solder material holds paramount importance. In this study, we performed molecular dynamics simulations using the modified embedded atom method to investigate the mechanical properties and crack propagation of single-crystal [Formula: see text]-Sn under different strain rates. The research findings demonstrate that as the strain rate increases, the single-crystal [Formula: see text]-Sn exhibits elevated yield strength, fracture strength, and strain, while the elastic modulus decreases. Under higher strain rates, the relationship between dislocation density and strain rate in single-crystal [Formula: see text]-Sn is quantitatively elucidated. The substantial increase in internal dislocation density imparts conspicuous strain hardening to the material, rendering plastic deformation more challenging. This observation sheds light on the microscale mechanism of strain hardening at the atomic level. Our results shall facilitate a deeper investigation into the mechanical behavior of single-crystal [Formula: see text]-Sn while also paving the path for optimizing the design and application of lead-free solder materials in the electronics industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小小虾完成签到 ,获得积分10
12秒前
weiwei完成签到,获得积分10
40秒前
爱思考的小笨笨完成签到,获得积分10
41秒前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如歌完成签到,获得积分10
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
Criminology34应助Lulu采纳,获得10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
情怀应助多乐多采纳,获得10
2分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
crazy完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
lovelife完成签到,获得积分10
4分钟前
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
魔幻的从丹完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
老石完成签到 ,获得积分10
5分钟前
Jessica应助hu采纳,获得10
5分钟前
6分钟前
6分钟前
雨jia完成签到,获得积分10
6分钟前
大个应助鹏哥爱科研采纳,获得10
6分钟前
6分钟前
6分钟前
George发布了新的文献求助10
7分钟前
自然亦凝完成签到,获得积分10
7分钟前
7分钟前
浑续发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545