Leverage NLP Models Against Other NLP Models: Two Invisible Feature Space Backdoor Attacks

后门 人工智能 杠杆(统计) 自然语言处理 计算机科学 特征(语言学) 机器学习 哲学 语言学 计算机安全
作者
Xiangjun Li,Xin Lu,Peixuan Li
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 1559-1568 被引量:1
标识
DOI:10.1109/tr.2024.3375526
摘要

At present, deep neural networks are at risk from backdoor attacks, but natural language processing (NLP) lacks sufficient research on backdoor attacks. To improve the invisibility of backdoor attacks, some innovative textual backdoor attack methods utilize modern language models to generate poisoned text with backdoor triggers, which are called feature space backdoor attacks. However, this article find that texts generated by the same language model without backdoor triggers also have a high probability of activating the backdoors they injected. Therefore, this article proposes a multistyle transfer-based backdoor attack that uses multiple text styles as the backdoor trigger. Furthermore, inspired by the ability of modern language models to distinguish between texts generated by different language models, this article proposes a paraphrase-based backdoor attack, which leverages the shared characteristics of sentences generated by the same paraphrase model as the backdoor trigger. Experiments have been conducted to demonstrate that both backdoor attack methods can be effective against NLP models. More importantly, compared with other feature space backdoor attacks, the poisoned samples generated by paraphrase-based backdoor attacks have improved semantic similarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要的小猫咪完成签到,获得积分10
2秒前
青阳完成签到,获得积分10
4秒前
菠菜应助熊仔一百采纳,获得100
6秒前
6秒前
ChenHan应助微微采纳,获得10
8秒前
lvbowen发布了新的文献求助20
8秒前
monkona应助能不能下载啊采纳,获得10
11秒前
lixiang发布了新的文献求助10
12秒前
monkona完成签到,获得积分10
14秒前
15秒前
htk发布了新的文献求助10
16秒前
澳臻白发布了新的文献求助10
18秒前
19秒前
tao发布了新的文献求助10
21秒前
22秒前
23秒前
无花果应助htk采纳,获得10
24秒前
24秒前
uu发布了新的文献求助10
25秒前
26秒前
树枝发布了新的文献求助10
28秒前
含蓄之桃完成签到 ,获得积分10
31秒前
515发布了新的文献求助10
31秒前
星辰大海应助凯文采纳,获得10
32秒前
yiya完成签到,获得积分10
32秒前
35秒前
无花果应助lvbowen采纳,获得10
36秒前
37秒前
gyx发布了新的文献求助10
38秒前
uu完成签到,获得积分10
38秒前
wking完成签到,获得积分20
40秒前
41秒前
41秒前
Cyber_relic完成签到,获得积分10
41秒前
42秒前
45秒前
yiya发布了新的文献求助10
46秒前
凯文发布了新的文献求助10
46秒前
gyx完成签到,获得积分10
46秒前
stefan完成签到,获得积分10
46秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348980
求助须知:如何正确求助?哪些是违规求助? 2975143
关于积分的说明 8667699
捐赠科研通 2655836
什么是DOI,文献DOI怎么找? 1454224
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696