已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assumption-free analysis for amplification-based quantitative nucleic acid detection

核酸 生物系统 核酸定量 金标准(测试) 计算机科学 计算生物学 生化工程 生物 统计 数学 生物化学 工程类
作者
Yu Fu,Lin Lü,Chuanbo Liu,Jin Wang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (10)
标识
DOI:10.1063/5.0191132
摘要

The accurate detection and quantification of biological species that are rarely present but potentially devastating is of paramount importance for the life sciences, biosecurity, food safety, and environmental monitoring. Consequently, there has been significant interest in the sensitive and accurate detection of nucleic acids, leveraging both chemical and biological methods. Among these, quantitative polymerase chain reaction (qPCR) is regarded as the gold standard due to its sensitivity and precision in identifying specific nucleic acid targets. Despite the widespread adoption of qPCR for nucleic acid detection, the analysis of qPCR data typically depends on the use of calibrated standard curves and a threshold method to interpret signal measurements. In this study, we use a stochastic simulation to show the limitations of the threshold method due to its assumptions on amplification kinetics. We propose a new approach for the absolute quantification of nucleic acids that overcomes these limitations by reconstructing the efficiency profile across amplification cycles and using cumulative amplification folds to build a standard curve, thus avoiding the constant efficiency assumption. Our method, validated through experiments with nucleic acid amplification in the presence of potent inhibitors, demonstrates improved accuracy in quantifying nucleic acids, avoiding the systematic errors of the threshold method. This innovation enhances the reliability of nucleic acid quantification, especially where traditional methods struggle with kinetic variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Young完成签到 ,获得积分10
1秒前
春春发布了新的文献求助10
1秒前
1秒前
naomi发布了新的文献求助30
6秒前
共享精神应助靓丽的采白采纳,获得10
6秒前
7秒前
rachel-yue发布了新的文献求助10
10秒前
11秒前
11秒前
13秒前
xzy998应助鸿儒采纳,获得10
14秒前
尉迟发布了新的文献求助10
16秒前
王倩发布了新的文献求助10
16秒前
地平发布了新的文献求助20
17秒前
止山完成签到,获得积分10
17秒前
19秒前
止山发布了新的文献求助10
19秒前
完美世界应助Maximum采纳,获得10
22秒前
28秒前
shrak完成签到 ,获得积分10
32秒前
34秒前
乐乐应助春春采纳,获得10
38秒前
40秒前
烟花应助wnag采纳,获得10
41秒前
luckkit完成签到,获得积分10
44秒前
pluto应助鸿儒采纳,获得50
44秒前
45秒前
小二郎应助尉迟采纳,获得10
47秒前
积极的奇异果完成签到 ,获得积分10
48秒前
49秒前
50秒前
jinchen发布了新的文献求助10
50秒前
张包子完成签到 ,获得积分10
51秒前
我主沉浮发布了新的文献求助10
52秒前
wnag发布了新的文献求助10
54秒前
专注翠梅发布了新的文献求助10
55秒前
球球发布了新的文献求助10
55秒前
光撒盐完成签到,获得积分10
57秒前
星辰大海应助jinchen采纳,获得50
59秒前
春日无尾熊完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314210
求助须知:如何正确求助?哪些是违规求助? 2946566
关于积分的说明 8530692
捐赠科研通 2622261
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665307
邀请新用户注册赠送积分活动 650838