清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving safety in mixed traffic: A learning-based model predictive control for autonomous and human-driven vehicle platooning

更安全的 模型预测控制 计算机科学 还原(数学) 基线(sea) 控制(管理) 机器学习 人工智能 汽车工程 模拟 工程类 计算机安全 海洋学 地质学 数学 几何学
作者
J. Wang,Zhihao Jiang,Yash Vardhan Pant
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111673-111673 被引量:10
标识
DOI:10.1016/j.knosys.2024.111673
摘要

As autonomous vehicles (AVs) become more common on public roads, their interaction with human-driven vehicles (HVs) in mixed traffic is inevitable. This requires new control strategies for AVs to handle the unpredictable nature of HVs. This study focused on safe control in mixed-vehicle platoons consisting of both AVs and HVs, particularly during longitudinal car-following scenarios. We introduce a novel model that combines a conventional first-principles model with a Gaussian process (GP) machine learning-based model to better predict HV behavior. Our results showed a significant improvement in predicting HV speed, with a 35.64% reduction in the root mean square error compared with the use of the first-principles model alone. We developed a new control strategy called GP-MPC, which uses the proposed HV model for safer distance management between vehicles in the mixed platoon. The GP-MPC strategy effectively utilizes the capacity of the GP model to assess uncertainties, thereby significantly enhancing safety in challenging traffic scenarios, such as emergency braking scenarios. In simulations, the GP-MPC strategy outperformed the baseline MPC method, offering better safety and more efficient vehicle movement in mixed traffic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助neptuniar采纳,获得10
10秒前
甜美的觅荷完成签到,获得积分10
17秒前
尊敬的凌晴完成签到 ,获得积分10
25秒前
35秒前
愤怒的念蕾完成签到,获得积分10
38秒前
cgs完成签到 ,获得积分10
39秒前
自由的雅旋完成签到 ,获得积分10
46秒前
练得身形似鹤形完成签到 ,获得积分10
46秒前
悠树里完成签到,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
neptuniar发布了新的文献求助10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
2分钟前
外向白竹完成签到,获得积分20
2分钟前
慕青应助keke采纳,获得10
2分钟前
jlwang完成签到,获得积分10
2分钟前
Bond完成签到 ,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
3分钟前
简单花花完成签到,获得积分10
3分钟前
mojiu发布了新的文献求助30
3分钟前
Tong完成签到,获得积分0
3分钟前
外向白竹发布了新的文献求助10
3分钟前
酷然完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
3分钟前
知行者完成签到 ,获得积分10
4分钟前
4分钟前
开心每一天完成签到 ,获得积分10
4分钟前
爆米花应助keke采纳,获得10
5分钟前
5分钟前
AM发布了新的文献求助10
5分钟前
mojiu完成签到,获得积分10
5分钟前
研友_VZG7GZ应助AM采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299