金属-绝缘体过渡
莫特绝缘子
过渡金属
材料科学
莫特跃迁
金属有机骨架
金属
纳米技术
凝聚态物理
化学物理
化学
物理
超导电性
冶金
物理化学
生物化学
吸附
赫巴德模型
催化作用
作者
Benjamin Löwe,B.O. Field,Jack Hellerstedt,Julian Ceddia,H. L. Nourse,B. J. Powell,Nikhil V. Medhekar,Agustin Schiffrin
标识
DOI:10.1038/s41467-024-47766-8
摘要
Electron-electron interactions in materials lead to exotic many-body quantum phenomena, including Mott metal-insulator transitions (MITs), magnetism, quantum spin liquids, and superconductivity. These phases depend on electronic band occupation and can be controlled via the chemical potential. Flat bands in two-dimensional (2D) and layered materials with a kagome lattice enhance electronic correlations. Although theoretically predicted, correlated-electron Mott insulating phases in monolayer 2D metal-organic frameworks (MOFs) with a kagome structure have not yet been realised experimentally. Here, we synthesise a 2D kagome MOF on a 2D insulator. Scanning tunnelling microscopy (STM) and spectroscopy reveal a MOF electronic energy gap of ∼200 meV, consistent with dynamical mean-field theory predictions of a Mott insulator. Combining template-induced (via work function variations of the substrate) and STM probe-induced gating, we locally tune the electron population of the MOF kagome bands and induce Mott MITs. These findings enable technologies based on electrostatic control of many-body quantum phases in 2D MOFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI