Multi-level brain tumor classification using hybrid coot flamingo search optimization Algorithm Enabled deep learning with MRI images

超参数 人工智能 计算机科学 模式识别(心理学) 分割 特征(语言学) 卡尔曼滤波器 图像分割 图像(数学) 哲学 语言学
作者
Jayasri Kotti,Manikandan Moovendran,Manivannan Kandasamy
出处
期刊:Network: Computation In Neural Systems [Taylor & Francis]
卷期号:: 1-32
标识
DOI:10.1080/0954898x.2024.2343342
摘要

An innovative multi-level BT classification approach based on deep learning has been proposed in this article. Here, classification is accomplished using the SpinalNet, whose structure is optimized by the Hybrid Coot Flamingo Search Optimization Algorithm (CootFSOA). Further, a novel segmentation approach using CootFSOA-LinkNet is devised for isolating the tumour area from the brain image. Here, the input MRI images are fed into the Adaptive Kalman Filter (AKF) to denoise the image. In the segmentation process, LinkNet is used to separate the tumour region from the MRI image. CootFSOA is used to achieve structural optimization of LinkNet. The segmented image is then used to create several features, and the resulting feature vector is fed into SpinalNet to detect BT. CootFSOA is used in this instance as well to adjust the SpinalNet's hyperparameters and achieve high detection accuracy. If a tumour is detected, second-level classification is carried out by employing the CootFSOA-SpinalNet to classify the input image into several types, such as gliomas, pituitary tumours, and meningiomas. Moreover, the efficacy of the CootFSOA-SpinalNet has been examined considering accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) and has recorded superior values of 0.926, 0.931, and 0.925, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助MHX采纳,获得10
1秒前
科目三应助搞笑5次采纳,获得10
1秒前
NexusExplorer应助北栀采纳,获得10
2秒前
的风格完成签到,获得积分10
2秒前
机智冬瓜完成签到,获得积分10
2秒前
Cartman发布了新的文献求助10
4秒前
完美世界应助krey采纳,获得10
5秒前
可爱的函函应助夜夜采纳,获得10
5秒前
酷波er应助烂漫成仁采纳,获得10
5秒前
1234567发布了新的文献求助10
6秒前
啦啦啦发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
单于安完成签到,获得积分10
9秒前
DD应助辛坦夫采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
深情安青应助义气的雁山采纳,获得10
11秒前
晶晶妹妹发布了新的文献求助10
11秒前
兴奋雅寒完成签到,获得积分10
12秒前
12秒前
syx发布了新的文献求助10
14秒前
开放剑鬼发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
北栀发布了新的文献求助10
15秒前
kecheng应助高点点采纳,获得10
15秒前
zzz发布了新的文献求助10
16秒前
fed发布了新的文献求助10
16秒前
16秒前
16秒前
18秒前
MYhang发布了新的文献求助10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188