MIVAE: Multiple Imputation based on Variational Auto-Encoder

插补(统计学) 计算机科学 数据挖掘 缺少数据 编码器 人工智能 机器学习 操作系统
作者
Qian Ma,Xia Li,Mei Bai,Xite Wang,Bo Ning,Guanyu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106270-106270 被引量:10
标识
DOI:10.1016/j.engappai.2023.106270
摘要

Nowadays, the issue of MV imputation has become one of the research hotspots in the field of data quality, since the missing values (MVs) are prevalent in real-world datasets and bring challenges to advanced data analytics algorithms. To impute the MVs, most existing approaches directly derive one estimation for each MV, which is categorized as the single imputation (SI). However, the SI ignores the uncertainty of the MVs, and thereby usually derive unsatisfactory imputation results compared to the Multiple imputation (MI). To extract the uncertainty of the MVs, the MI algorithms derive multiple candidate estimations for each MV. Nevertheless, existing MI approaches are few due to the complicated data-handling process. Accordingly, in this paper, by exploring the Variational Auto-Encoder (VAE) model, we propose a new MI approach, namely MIVAE (Multiple Imputation based on Variational Auto-Encoder) to impute MVs for the tabular data. In MIVAE, we first add a corrupted input layer (where the synthetic MVs are introduced) adjacent to the original input layer to make the model capable of MV issue. Then, we obtain multiple rather than single candidate estimations for each data sample from the posterior distribution of the latent variables learned by our designed model. In such way, the multiple imputation is effectively implemented where the uncertainty of the MVs are extracted perfectly. Next, to obtain satisfactory imputation results, we add a data analysis layer at the end of the network to integrate multiple candidate estimations intelligently. Finally, the experimental results over four real-world datasets demonstrate that MIVAE achieves significantly higher imputation accuracy compared to existing solutions, and MIVAE are capable of handling both numerical and categorized tabular data. For example, the imputation accuracy based on MIVAE improves up to about 40% and 30% compared with PMM and MIWAE (which are the state-of-the-art MI approach) over the CropMapping dataset, respectively. Moreover, we train a MIVAE model over three datasets containing MVs, respectively. By leveraging the trained MIVAE, the classification performance over the imputed data is similar to that over the complete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
energetic关注了科研通微信公众号
刚刚
yxf完成签到,获得积分10
刚刚
egoistMM完成签到,获得积分10
1秒前
我心飞翔完成签到 ,获得积分10
2秒前
2秒前
3秒前
Somogyis发布了新的文献求助10
3秒前
lylyspeechless完成签到,获得积分10
4秒前
胡楠完成签到,获得积分10
5秒前
5秒前
5秒前
JY'完成签到,获得积分10
6秒前
黄黄完成签到,获得积分10
6秒前
现实的飞风完成签到,获得积分10
7秒前
Aipoi发布了新的文献求助10
10秒前
neu_zxy1991完成签到,获得积分10
10秒前
xiaoblue完成签到,获得积分10
13秒前
梅子完成签到 ,获得积分10
13秒前
Aipoi完成签到,获得积分10
14秒前
14秒前
Ccddxx完成签到,获得积分10
14秒前
666完成签到,获得积分10
15秒前
15秒前
16秒前
GankhuyagJavzan完成签到,获得积分10
16秒前
17秒前
Ava应助Lyd采纳,获得10
17秒前
17秒前
ll发布了新的文献求助10
17秒前
冷阳发布了新的文献求助20
18秒前
翧礼完成签到,获得积分10
19秒前
李海乐发布了新的文献求助10
19秒前
20秒前
SYX发布了新的文献求助10
22秒前
友好的牛排完成签到,获得积分0
23秒前
Dxy-TOFA完成签到,获得积分10
23秒前
energetic发布了新的文献求助10
24秒前
SYX完成签到,获得积分10
26秒前
wh完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554