MIVAE: Multiple Imputation based on Variational Auto-Encoder

插补(统计学) 计算机科学 数据挖掘 缺少数据 编码器 人工智能 机器学习 操作系统
作者
Qian Ma,Xia Li,Mei Bai,Xite Wang,Bo Ning,Guanyu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106270-106270 被引量:10
标识
DOI:10.1016/j.engappai.2023.106270
摘要

Nowadays, the issue of MV imputation has become one of the research hotspots in the field of data quality, since the missing values (MVs) are prevalent in real-world datasets and bring challenges to advanced data analytics algorithms. To impute the MVs, most existing approaches directly derive one estimation for each MV, which is categorized as the single imputation (SI). However, the SI ignores the uncertainty of the MVs, and thereby usually derive unsatisfactory imputation results compared to the Multiple imputation (MI). To extract the uncertainty of the MVs, the MI algorithms derive multiple candidate estimations for each MV. Nevertheless, existing MI approaches are few due to the complicated data-handling process. Accordingly, in this paper, by exploring the Variational Auto-Encoder (VAE) model, we propose a new MI approach, namely MIVAE (Multiple Imputation based on Variational Auto-Encoder) to impute MVs for the tabular data. In MIVAE, we first add a corrupted input layer (where the synthetic MVs are introduced) adjacent to the original input layer to make the model capable of MV issue. Then, we obtain multiple rather than single candidate estimations for each data sample from the posterior distribution of the latent variables learned by our designed model. In such way, the multiple imputation is effectively implemented where the uncertainty of the MVs are extracted perfectly. Next, to obtain satisfactory imputation results, we add a data analysis layer at the end of the network to integrate multiple candidate estimations intelligently. Finally, the experimental results over four real-world datasets demonstrate that MIVAE achieves significantly higher imputation accuracy compared to existing solutions, and MIVAE are capable of handling both numerical and categorized tabular data. For example, the imputation accuracy based on MIVAE improves up to about 40% and 30% compared with PMM and MIWAE (which are the state-of-the-art MI approach) over the CropMapping dataset, respectively. Moreover, we train a MIVAE model over three datasets containing MVs, respectively. By leveraging the trained MIVAE, the classification performance over the imputed data is similar to that over the complete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Syzhou完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
pu发布了新的文献求助10
1秒前
英姑应助rgsrgrs采纳,获得10
2秒前
shlw完成签到,获得积分10
2秒前
lasak完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
含蓄文博完成签到 ,获得积分10
3秒前
积极幻然完成签到 ,获得积分10
4秒前
英姑应助泽山咸采纳,获得10
4秒前
萧水白完成签到,获得积分10
4秒前
aaaaa发布了新的文献求助10
5秒前
woyufengtian完成签到,获得积分10
5秒前
6秒前
rgsrgrs完成签到,获得积分10
6秒前
惊鸿一面完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
Larluli完成签到,获得积分20
10秒前
10秒前
说话请投币完成签到,获得积分10
10秒前
iNk应助明杰采纳,获得10
11秒前
DS发布了新的文献求助10
11秒前
11秒前
Twonej应助datiancaihaha采纳,获得30
12秒前
CodeCraft应助nuo_11采纳,获得10
12秒前
恋如雪止应助于你无瓜采纳,获得10
13秒前
快乐的妙菱完成签到,获得积分10
13秒前
14秒前
领导范儿应助优美紫槐采纳,获得10
16秒前
大模型应助明杰采纳,获得10
16秒前
王大可发布了新的文献求助10
16秒前
发篇Sci不过分吧完成签到,获得积分10
17秒前
只只发布了新的文献求助10
18秒前
李健的小迷弟应助lyy采纳,获得10
18秒前
清爽的诗云完成签到,获得积分10
19秒前
我是老大应助支凤妖采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513