MIVAE: Multiple Imputation based on Variational Auto-Encoder

插补(统计学) 计算机科学 数据挖掘 缺少数据 编码器 人工智能 机器学习 操作系统
作者
Qian Ma,Xia Li,Mei Bai,Xite Wang,Bo Ning,Guanyu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106270-106270 被引量:10
标识
DOI:10.1016/j.engappai.2023.106270
摘要

Nowadays, the issue of MV imputation has become one of the research hotspots in the field of data quality, since the missing values (MVs) are prevalent in real-world datasets and bring challenges to advanced data analytics algorithms. To impute the MVs, most existing approaches directly derive one estimation for each MV, which is categorized as the single imputation (SI). However, the SI ignores the uncertainty of the MVs, and thereby usually derive unsatisfactory imputation results compared to the Multiple imputation (MI). To extract the uncertainty of the MVs, the MI algorithms derive multiple candidate estimations for each MV. Nevertheless, existing MI approaches are few due to the complicated data-handling process. Accordingly, in this paper, by exploring the Variational Auto-Encoder (VAE) model, we propose a new MI approach, namely MIVAE (Multiple Imputation based on Variational Auto-Encoder) to impute MVs for the tabular data. In MIVAE, we first add a corrupted input layer (where the synthetic MVs are introduced) adjacent to the original input layer to make the model capable of MV issue. Then, we obtain multiple rather than single candidate estimations for each data sample from the posterior distribution of the latent variables learned by our designed model. In such way, the multiple imputation is effectively implemented where the uncertainty of the MVs are extracted perfectly. Next, to obtain satisfactory imputation results, we add a data analysis layer at the end of the network to integrate multiple candidate estimations intelligently. Finally, the experimental results over four real-world datasets demonstrate that MIVAE achieves significantly higher imputation accuracy compared to existing solutions, and MIVAE are capable of handling both numerical and categorized tabular data. For example, the imputation accuracy based on MIVAE improves up to about 40% and 30% compared with PMM and MIWAE (which are the state-of-the-art MI approach) over the CropMapping dataset, respectively. Moreover, we train a MIVAE model over three datasets containing MVs, respectively. By leveraging the trained MIVAE, the classification performance over the imputed data is similar to that over the complete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏的飞薇完成签到,获得积分10
刚刚
511完成签到 ,获得积分10
刚刚
小雨完成签到,获得积分10
2秒前
小黄瓜896发布了新的文献求助10
3秒前
小鱼儿完成签到,获得积分10
4秒前
屿鑫完成签到,获得积分10
5秒前
慕青应助小黄瓜896采纳,获得10
13秒前
自信鞯完成签到,获得积分10
13秒前
13秒前
freebird完成签到,获得积分10
14秒前
feiyang完成签到,获得积分10
14秒前
学术小白完成签到 ,获得积分10
15秒前
Light完成签到,获得积分10
15秒前
纳古菌完成签到,获得积分10
15秒前
JamesPei应助huang采纳,获得10
16秒前
白小超人完成签到 ,获得积分10
16秒前
cc发布了新的文献求助10
16秒前
当时的发布了新的文献求助30
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
橙子是不是完成签到,获得积分10
20秒前
郭莹莹发布了新的文献求助10
20秒前
ding应助粥粥粥采纳,获得10
21秒前
Gaowenjie完成签到,获得积分20
22秒前
蓝天发布了新的文献求助10
23秒前
24秒前
ACCEPT完成签到,获得积分10
24秒前
outbed完成签到,获得积分10
25秒前
宋晓静完成签到,获得积分10
26秒前
都要多喝水完成签到,获得积分10
26秒前
mumu发布了新的文献求助10
27秒前
陆陆完成签到 ,获得积分10
27秒前
27秒前
个性慕卉完成签到,获得积分10
28秒前
图图完成签到 ,获得积分10
28秒前
cc完成签到,获得积分10
28秒前
28秒前
领导范儿应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
wwy应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806