MIVAE: Multiple Imputation based on Variational Auto-Encoder

插补(统计学) 计算机科学 数据挖掘 缺少数据 编码器 人工智能 机器学习 操作系统
作者
Qian Ma,Xia Li,Mei Bai,Xite Wang,Bo Ning,Guanyu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106270-106270 被引量:6
标识
DOI:10.1016/j.engappai.2023.106270
摘要

Nowadays, the issue of MV imputation has become one of the research hotspots in the field of data quality, since the missing values (MVs) are prevalent in real-world datasets and bring challenges to advanced data analytics algorithms. To impute the MVs, most existing approaches directly derive one estimation for each MV, which is categorized as the single imputation (SI). However, the SI ignores the uncertainty of the MVs, and thereby usually derive unsatisfactory imputation results compared to the Multiple imputation (MI). To extract the uncertainty of the MVs, the MI algorithms derive multiple candidate estimations for each MV. Nevertheless, existing MI approaches are few due to the complicated data-handling process. Accordingly, in this paper, by exploring the Variational Auto-Encoder (VAE) model, we propose a new MI approach, namely MIVAE (Multiple Imputation based on Variational Auto-Encoder) to impute MVs for the tabular data. In MIVAE, we first add a corrupted input layer (where the synthetic MVs are introduced) adjacent to the original input layer to make the model capable of MV issue. Then, we obtain multiple rather than single candidate estimations for each data sample from the posterior distribution of the latent variables learned by our designed model. In such way, the multiple imputation is effectively implemented where the uncertainty of the MVs are extracted perfectly. Next, to obtain satisfactory imputation results, we add a data analysis layer at the end of the network to integrate multiple candidate estimations intelligently. Finally, the experimental results over four real-world datasets demonstrate that MIVAE achieves significantly higher imputation accuracy compared to existing solutions, and MIVAE are capable of handling both numerical and categorized tabular data. For example, the imputation accuracy based on MIVAE improves up to about 40% and 30% compared with PMM and MIWAE (which are the state-of-the-art MI approach) over the CropMapping dataset, respectively. Moreover, we train a MIVAE model over three datasets containing MVs, respectively. By leveraging the trained MIVAE, the classification performance over the imputed data is similar to that over the complete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪衣豆沙发布了新的文献求助10
刚刚
wt完成签到,获得积分10
1秒前
认真的刺猬完成签到,获得积分10
2秒前
3秒前
liuzhanyu发布了新的文献求助10
3秒前
烟花应助优秀的枕头采纳,获得10
4秒前
4秒前
果粒橙完成签到 ,获得积分10
4秒前
4秒前
雪衣豆沙完成签到,获得积分20
5秒前
星辰大海应助酷炫的归尘采纳,获得10
6秒前
6秒前
palexander发布了新的文献求助10
6秒前
Wayne72完成签到,获得积分0
6秒前
wei发布了新的文献求助10
6秒前
小东发布了新的文献求助10
7秒前
wcy发布了新的文献求助10
8秒前
kk发布了新的文献求助10
9秒前
9秒前
10秒前
希望天下0贩的0应助KIKIKI采纳,获得10
10秒前
11秒前
12秒前
Dampfish完成签到,获得积分10
13秒前
wcy完成签到,获得积分10
13秒前
14秒前
彩色菲鹰完成签到,获得积分10
14秒前
8R60d8应助桃子采纳,获得10
14秒前
14秒前
蜗牛完成签到 ,获得积分10
14秒前
天天快乐应助palexander采纳,获得10
16秒前
充电宝应助tong77采纳,获得10
16秒前
Dampfish发布了新的文献求助10
16秒前
16秒前
17秒前
彩色菲鹰发布了新的文献求助10
17秒前
20250702完成签到,获得积分10
18秒前
fatumai完成签到,获得积分20
18秒前
18秒前
田様应助家伟采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141