已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MIVAE: Multiple Imputation based on Variational Auto-Encoder

插补(统计学) 计算机科学 数据挖掘 缺少数据 编码器 人工智能 机器学习 操作系统
作者
Qian Ma,Xia Li,Mei Bai,Xite Wang,Bo Ning,Guanyu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106270-106270 被引量:10
标识
DOI:10.1016/j.engappai.2023.106270
摘要

Nowadays, the issue of MV imputation has become one of the research hotspots in the field of data quality, since the missing values (MVs) are prevalent in real-world datasets and bring challenges to advanced data analytics algorithms. To impute the MVs, most existing approaches directly derive one estimation for each MV, which is categorized as the single imputation (SI). However, the SI ignores the uncertainty of the MVs, and thereby usually derive unsatisfactory imputation results compared to the Multiple imputation (MI). To extract the uncertainty of the MVs, the MI algorithms derive multiple candidate estimations for each MV. Nevertheless, existing MI approaches are few due to the complicated data-handling process. Accordingly, in this paper, by exploring the Variational Auto-Encoder (VAE) model, we propose a new MI approach, namely MIVAE (Multiple Imputation based on Variational Auto-Encoder) to impute MVs for the tabular data. In MIVAE, we first add a corrupted input layer (where the synthetic MVs are introduced) adjacent to the original input layer to make the model capable of MV issue. Then, we obtain multiple rather than single candidate estimations for each data sample from the posterior distribution of the latent variables learned by our designed model. In such way, the multiple imputation is effectively implemented where the uncertainty of the MVs are extracted perfectly. Next, to obtain satisfactory imputation results, we add a data analysis layer at the end of the network to integrate multiple candidate estimations intelligently. Finally, the experimental results over four real-world datasets demonstrate that MIVAE achieves significantly higher imputation accuracy compared to existing solutions, and MIVAE are capable of handling both numerical and categorized tabular data. For example, the imputation accuracy based on MIVAE improves up to about 40% and 30% compared with PMM and MIWAE (which are the state-of-the-art MI approach) over the CropMapping dataset, respectively. Moreover, we train a MIVAE model over three datasets containing MVs, respectively. By leveraging the trained MIVAE, the classification performance over the imputed data is similar to that over the complete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫衣絮完成签到 ,获得积分10
刚刚
善学以致用应助Unicorn采纳,获得10
1秒前
mbq完成签到,获得积分10
1秒前
hrs完成签到 ,获得积分10
1秒前
支寄灵完成签到,获得积分10
1秒前
Tumumu完成签到,获得积分10
2秒前
认真的寒香完成签到,获得积分10
4秒前
研友_ngX12Z完成签到 ,获得积分10
4秒前
山山完成签到 ,获得积分10
4秒前
孤灯剑客完成签到,获得积分10
4秒前
wfw完成签到,获得积分10
5秒前
cyy完成签到,获得积分10
5秒前
耳东完成签到 ,获得积分10
7秒前
昏睡的铭完成签到,获得积分10
7秒前
周萌完成签到 ,获得积分10
7秒前
学术霸王完成签到,获得积分10
8秒前
8秒前
mumu完成签到,获得积分10
8秒前
Haki完成签到,获得积分10
8秒前
Joe完成签到,获得积分10
9秒前
感动手链完成签到,获得积分10
9秒前
碗在水中央完成签到 ,获得积分10
9秒前
wanci应助cyy采纳,获得10
11秒前
x夏天完成签到 ,获得积分10
11秒前
W~舞完成签到,获得积分10
11秒前
悄悄完成签到 ,获得积分10
12秒前
12秒前
小鸣完成签到 ,获得积分10
12秒前
Sunshine完成签到,获得积分10
13秒前
橘子屿布丁完成签到,获得积分10
14秒前
Msure完成签到,获得积分10
15秒前
Orange应助66采纳,获得10
15秒前
Aha完成签到 ,获得积分10
15秒前
曾诗婷完成签到 ,获得积分10
16秒前
Chaos完成签到 ,获得积分10
17秒前
cc完成签到 ,获得积分10
17秒前
欢喜的文轩完成签到 ,获得积分10
17秒前
18秒前
酷炫远山完成签到 ,获得积分10
19秒前
VirgoYn完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571