MIVAE: Multiple Imputation based on Variational Auto-Encoder

插补(统计学) 计算机科学 数据挖掘 缺少数据 编码器 人工智能 机器学习 操作系统
作者
Qian Ma,Xia Li,Mei Bai,Xite Wang,Bo Ning,Guanyu Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106270-106270 被引量:10
标识
DOI:10.1016/j.engappai.2023.106270
摘要

Nowadays, the issue of MV imputation has become one of the research hotspots in the field of data quality, since the missing values (MVs) are prevalent in real-world datasets and bring challenges to advanced data analytics algorithms. To impute the MVs, most existing approaches directly derive one estimation for each MV, which is categorized as the single imputation (SI). However, the SI ignores the uncertainty of the MVs, and thereby usually derive unsatisfactory imputation results compared to the Multiple imputation (MI). To extract the uncertainty of the MVs, the MI algorithms derive multiple candidate estimations for each MV. Nevertheless, existing MI approaches are few due to the complicated data-handling process. Accordingly, in this paper, by exploring the Variational Auto-Encoder (VAE) model, we propose a new MI approach, namely MIVAE (Multiple Imputation based on Variational Auto-Encoder) to impute MVs for the tabular data. In MIVAE, we first add a corrupted input layer (where the synthetic MVs are introduced) adjacent to the original input layer to make the model capable of MV issue. Then, we obtain multiple rather than single candidate estimations for each data sample from the posterior distribution of the latent variables learned by our designed model. In such way, the multiple imputation is effectively implemented where the uncertainty of the MVs are extracted perfectly. Next, to obtain satisfactory imputation results, we add a data analysis layer at the end of the network to integrate multiple candidate estimations intelligently. Finally, the experimental results over four real-world datasets demonstrate that MIVAE achieves significantly higher imputation accuracy compared to existing solutions, and MIVAE are capable of handling both numerical and categorized tabular data. For example, the imputation accuracy based on MIVAE improves up to about 40% and 30% compared with PMM and MIWAE (which are the state-of-the-art MI approach) over the CropMapping dataset, respectively. Moreover, we train a MIVAE model over three datasets containing MVs, respectively. By leveraging the trained MIVAE, the classification performance over the imputed data is similar to that over the complete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nice1025完成签到,获得积分10
刚刚
刚刚
阿凡人完成签到,获得积分10
刚刚
wanghao婷发布了新的文献求助10
1秒前
鹅鹅鹅完成签到,获得积分10
1秒前
2秒前
2秒前
ppzy发布了新的文献求助10
2秒前
CodeCraft应助Gotyababy采纳,获得10
2秒前
3秒前
仁爱听露完成签到,获得积分10
3秒前
Akim应助marco采纳,获得10
3秒前
3秒前
松谦发布了新的文献求助10
3秒前
萤火虫完成签到,获得积分10
4秒前
4秒前
无花果应助天真小蚂蚁采纳,获得10
4秒前
4秒前
hanxi发布了新的文献求助10
4秒前
bkagyin应助王哪跑12采纳,获得10
5秒前
科研通AI6应助songf11采纳,获得10
6秒前
解雨洁发布了新的文献求助10
6秒前
6秒前
昵称呢发布了新的文献求助10
6秒前
7秒前
在水一方应助sesu采纳,获得10
7秒前
咚咚发布了新的文献求助20
7秒前
7秒前
无限的谷丝完成签到,获得积分20
7秒前
8秒前
吃货完成签到,获得积分10
8秒前
体贴电源完成签到 ,获得积分10
8秒前
ZL张莉发布了新的文献求助30
8秒前
8秒前
852应助张一诺021222采纳,获得10
9秒前
dd完成签到 ,获得积分10
9秒前
jenningseastera应助缺粥采纳,获得10
10秒前
10秒前
10秒前
科研通AI6应助wanghao婷采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709