Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies

代谢组学 生物标志物发现 生物标志物 化学 计算生物学 质谱法 蛋白质组学 色谱法 生物化学 生物 基因
作者
Chih‐Wei Chang,Jen-Yi Hsu,Ping-Zu Hsiao,Yuan-Chih Chen,Pao‐Chi Liao
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (4): 550-561 被引量:1
标识
DOI:10.1021/jasms.2c00294
摘要

High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚心的石头关注了科研通微信公众号
刚刚
刚刚
丘比特应助秦玉蓉采纳,获得10
1秒前
FashionBoy应助智慧女孩采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
Ava应助冰千蕙采纳,获得10
3秒前
lotu_fr完成签到,获得积分10
4秒前
英姑应助赵嘉钰采纳,获得10
5秒前
充电宝应助大力的诗蕾采纳,获得10
5秒前
iui飞驳回了大个应助
7秒前
7秒前
7秒前
Jason完成签到,获得积分10
7秒前
顺心火龙果完成签到,获得积分10
10秒前
murpuy完成签到,获得积分10
10秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
在水一方应助qq采纳,获得10
11秒前
狂野忆文发布了新的文献求助10
11秒前
小青龙发布了新的文献求助10
12秒前
司徒文青应助Lucas采纳,获得30
12秒前
13秒前
wei完成签到,获得积分20
15秒前
15秒前
阿Q完成签到,获得积分10
16秒前
16秒前
17秒前
宇宙第一帅发布了新的文献求助200
18秒前
羊肉泡馍发布了新的文献求助10
18秒前
徐小赞发布了新的文献求助10
19秒前
结实大白完成签到,获得积分10
20秒前
PRIPRO关注了科研通微信公众号
20秒前
魔幻的觅珍完成签到,获得积分10
20秒前
文献达人完成签到,获得积分10
20秒前
20秒前
20秒前
共享精神应助欢喜的心情采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891