Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies

代谢组学 生物标志物发现 生物标志物 化学 计算生物学 质谱法 蛋白质组学 色谱法 生物化学 生物 基因
作者
Chih‐Wei Chang,Jen-Yi Hsu,Ping-Zu Hsiao,Yuan-Chih Chen,Pao‐Chi Liao
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (4): 550-561 被引量:1
标识
DOI:10.1021/jasms.2c00294
摘要

High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
retosure发布了新的文献求助10
刚刚
范先生发布了新的文献求助10
刚刚
1秒前
脑洞疼应助夕沫采纳,获得10
1秒前
郭向玲发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
英俊的铭应助Aqua采纳,获得10
5秒前
隐形曼青应助Lam采纳,获得10
5秒前
xiaoxigua发布了新的文献求助30
5秒前
6秒前
核桃应助实验室迷因水母采纳,获得20
6秒前
6秒前
时与发布了新的文献求助10
6秒前
6秒前
斯文败类应助XHMM采纳,获得10
6秒前
共享精神应助YingyingFan采纳,获得10
6秒前
Ava应助哈哈哈哈采纳,获得10
7秒前
赘婿应助pp采纳,获得30
7秒前
xiaoming发布了新的文献求助10
7秒前
记忆超群完成签到,获得积分10
8秒前
黑猫乾杯应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
vvv应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
顺心小凝完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491435
求助须知:如何正确求助?哪些是违规求助? 4589902
关于积分的说明 14427762
捐赠科研通 4522095
什么是DOI,文献DOI怎么找? 2477674
邀请新用户注册赠送积分活动 1462841
关于科研通互助平台的介绍 1435593