Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies

代谢组学 生物标志物发现 生物标志物 化学 计算生物学 质谱法 蛋白质组学 色谱法 生物化学 生物 基因
作者
Chih‐Wei Chang,Jen-Yi Hsu,Ping-Zu Hsiao,Yuan-Chih Chen,Pao‐Chi Liao
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (4): 550-561 被引量:1
标识
DOI:10.1021/jasms.2c00294
摘要

High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我耀文章发布了新的文献求助10
1秒前
JINY发布了新的文献求助10
1秒前
123完成签到,获得积分10
3秒前
大壮_0808完成签到,获得积分10
4秒前
共享精神应助丹丹采纳,获得10
4秒前
6秒前
6秒前
wangweiwei完成签到,获得积分10
7秒前
李健应助jucy采纳,获得10
8秒前
小牛牛完成签到,获得积分10
9秒前
FashionBoy应助明亮灭绝采纳,获得10
9秒前
cyrong应助伊小美采纳,获得10
10秒前
lmwnb完成签到,获得积分10
10秒前
splatoon发布了新的文献求助10
11秒前
11秒前
11秒前
treelet007完成签到,获得积分10
12秒前
wangzhewwe完成签到,获得积分20
12秒前
13秒前
执着易绿完成签到,获得积分10
13秒前
陈军应助科研通管家采纳,获得20
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
biye应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
陈军应助科研通管家采纳,获得20
13秒前
biye应助科研通管家采纳,获得10
14秒前
陈军应助科研通管家采纳,获得20
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
沉默友菱应助科研通管家采纳,获得20
14秒前
852应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
paperdl应助科研通管家采纳,获得30
14秒前
14秒前
小叮当完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845