Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies

代谢组学 生物标志物发现 生物标志物 化学 计算生物学 质谱法 蛋白质组学 色谱法 生物化学 生物 基因
作者
Chih‐Wei Chang,Jen-Yi Hsu,Ping-Zu Hsiao,Yuan-Chih Chen,Pao‐Chi Liao
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (4): 550-561 被引量:1
标识
DOI:10.1021/jasms.2c00294
摘要

High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ZZZ采纳,获得10
刚刚
1秒前
顺心书琴完成签到,获得积分10
1秒前
习习应助Nifeng采纳,获得10
1秒前
mrmrer发布了新的文献求助10
1秒前
3秒前
MUSTer一一完成签到 ,获得积分10
3秒前
通通通完成签到,获得积分10
3秒前
3秒前
务实的菓完成签到 ,获得积分10
4秒前
似水流年完成签到,获得积分10
4秒前
An慧完成签到,获得积分10
4秒前
Hello应助阿金采纳,获得10
4秒前
4秒前
4秒前
6秒前
顾夏包完成签到,获得积分10
6秒前
小土豆发布了新的文献求助50
7秒前
科研通AI5应助跑在颖采纳,获得10
7秒前
追寻代真发布了新的文献求助10
8秒前
mrmrer完成签到,获得积分20
8秒前
8秒前
8秒前
毛慢慢发布了新的文献求助10
9秒前
9秒前
今天不学习明天变垃圾完成签到,获得积分10
9秒前
10秒前
10秒前
布布完成签到,获得积分10
11秒前
一独白发布了新的文献求助10
11秒前
周周完成签到 ,获得积分10
11秒前
淡然完成签到,获得积分10
12秒前
明理小土豆完成签到,获得积分10
12秒前
刘国建郭菱香完成签到,获得积分10
12秒前
嘤嘤嘤完成签到,获得积分10
12秒前
九川应助粱自中采纳,获得10
12秒前
无辜之卉完成签到,获得积分10
13秒前
无花果应助Island采纳,获得10
13秒前
13秒前
SHDeathlock发布了新的文献求助200
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762