Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies

代谢组学 生物标志物发现 生物标志物 化学 计算生物学 质谱法 蛋白质组学 色谱法 生物化学 生物 基因
作者
Chih‐Wei Chang,Jen-Yi Hsu,Ping-Zu Hsiao,Yuan-Chih Chen,Pao‐Chi Liao
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (4): 550-561 被引量:5
标识
DOI:10.1021/jasms.2c00294
摘要

High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助3361702776采纳,获得10
1秒前
隐形曼青应助易安采纳,获得30
1秒前
酷波er应助汤襄采纳,获得10
1秒前
Sugar发布了新的文献求助20
2秒前
Carrie完成签到,获得积分20
3秒前
沉静凡白发布了新的文献求助10
4秒前
4秒前
云淡风轻发布了新的文献求助10
5秒前
5秒前
执风完成签到,获得积分20
5秒前
英吉利25发布了新的文献求助10
5秒前
坚定的小土豆完成签到,获得积分20
6秒前
机灵柚子发布了新的文献求助200
6秒前
可爱的函函应助幽默果汁采纳,获得10
7秒前
科研通AI6.1应助落水无波采纳,获得10
7秒前
7秒前
TT完成签到 ,获得积分20
8秒前
隔壁海绵宝宝完成签到,获得积分10
8秒前
1640301090完成签到,获得积分10
8秒前
9秒前
十一发布了新的文献求助20
9秒前
玩命的小虾米完成签到,获得积分10
9秒前
不赖床的科研狗完成签到,获得积分10
9秒前
whatever应助加菲丰丰采纳,获得20
9秒前
HH完成签到 ,获得积分10
9秒前
哭泣海雪发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
星辰大海应助蚂蚁牙黑采纳,获得10
12秒前
13秒前
一树灯笼发布了新的文献求助10
13秒前
13秒前
smottom应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
haoduoyu完成签到 ,获得积分10
14秒前
smottom应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281