Identifying Hair Biomarker Candidates for Alzheimer’s Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies

代谢组学 生物标志物发现 生物标志物 化学 计算生物学 质谱法 蛋白质组学 色谱法 生物化学 生物 基因
作者
Chih‐Wei Chang,Jen-Yi Hsu,Ping-Zu Hsiao,Yuan-Chih Chen,Pao‐Chi Liao
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:34 (4): 550-561 被引量:5
标识
DOI:10.1021/jasms.2c00294
摘要

High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助momo采纳,获得10
1秒前
Akim应助熊若宇采纳,获得10
2秒前
陈嘉伟发布了新的文献求助10
3秒前
Tooyangyang发布了新的文献求助30
3秒前
彩色淼淼完成签到,获得积分10
5秒前
烟花应助彩色枫采纳,获得10
6秒前
yoyo完成签到,获得积分10
7秒前
9秒前
共渡完成签到,获得积分10
10秒前
Jing完成签到 ,获得积分10
11秒前
Raye完成签到 ,获得积分10
12秒前
幽默的钢铁侠完成签到,获得积分20
13秒前
13秒前
yqd666777完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
悠米爱吃图奇完成签到 ,获得积分10
15秒前
LL发布了新的文献求助10
16秒前
重要文龙完成签到,获得积分10
17秒前
合适的听白完成签到,获得积分20
18秒前
Tooyangyang完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
重要文龙发布了新的文献求助10
22秒前
科研通AI6.1应助娜娜采纳,获得10
22秒前
善学以致用应助bai采纳,获得10
23秒前
23秒前
23秒前
俏皮颤完成签到,获得积分10
24秒前
Jasper应助111采纳,获得10
24秒前
安年完成签到 ,获得积分10
25秒前
25秒前
君故发布了新的文献求助10
25秒前
熊若宇完成签到,获得积分10
26秒前
27秒前
LHS发布了新的文献求助10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071