张量(固有定义)
奇异值分解
秩(图论)
频道(广播)
代表(政治)
基础(线性代数)
格拉斯曼的
计算机科学
分解
歧管(流体力学)
算法
塔克分解
数学
数学优化
张量分解
几何学
纯数学
组合数学
工程类
机械工程
计算机网络
生态学
政治
政治学
法学
生物
作者
Mengyi Qi,Qi Liu,Wei Xuan,Pengpeng Lv
标识
DOI:10.1109/icct56141.2022.10073106
摘要
Previous works mainly considered semi-passive Re-configurable intelligent surface (RIS) design with special layout arrangements, ignoring the fact that the local observed values may not reflect the overall channel when RIS elements increase. In this paper, we design a semi-passive RIS structure with a random arrangement, and propose a tensor completion-based channel estimation algorithm to recover the whole channel from the partially observed signals. Specifically, we introduce the tensor singular value decomposition (t-svd) framework to learn the inherent low-rank representation of the observed data: the search for inherent basis representations is carried out on the t-Grassmannian manifold, and the representation of low-rank tensor under this basis has a closed-form solution. As long as the proportion of active components reaches a certain level, the proposed algorithm can work well. Simulations show that the t-svd-based tensor completion algorithm performs better than the CP decomposition-based tensor completion algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI