Enhancing thermal transport across diamond/graphene heterostructure interface

材料科学 石墨烯 异质结 钻石 声子 凝聚态物理 基质(水族馆) 石墨烯纳米带 声子散射 热导率 光电子学 纳米技术 复合材料 物理 海洋学 地质学
作者
Yiling Liu,Lin Qiu,Jinlong Liu,Yanhui Feng
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:209: 124123-124123 被引量:32
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124123
摘要

The thermal properties of two-dimensional materials and their heterostructure are critical for efficient heat dissipation in nano-devices. A good example is graphene which exhibits excellent in-plane thermal transport properties. However, the substantial interfacial thermal resistance between graphene and the substrate greatly hinders its practical application. Diamond is a good choice as a substrate to reduce out-of-plane phonon scattering when graphene is contacted with the substrate because of their high structural similarity. Based on non-equilibrium molecular dynamics simulations, the effects of graphene layer count and the temperature on the thermal conductance of diamond/graphene heterostructure are investigated. The results show that the interfacial thermal conductance of diamond/single-layer graphene heterostructure is at least double that of diamond/multi-layer graphene heterostructure. Moreover, high temperature is also conducive to thermal transport for diamond/graphene heterostructure. Due to the anisotropy of graphene, the in-plane and out-of-plane phonon density of state were analyzed. The trend of overlap energy of out-of-plane phonon density of state is consistent with that of the interfacial thermal conductance, which suggests that out-of-plane phonon has a greater effect on heat transport at the interface. The increasing temperature excites more high-frequency phonons, and thus, promotes the phonon coupling of diamond and graphene. This well explains the increases in interfacial thermal conductance at a higher temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
粥粥完成签到 ,获得积分10
1秒前
小离发布了新的文献求助30
2秒前
3秒前
nk完成签到 ,获得积分10
3秒前
kkk完成签到 ,获得积分10
3秒前
韭菜发布了新的文献求助10
3秒前
KSGGS发布了新的文献求助30
4秒前
李爱国应助tanjianxin采纳,获得10
4秒前
4秒前
4秒前
柚子发布了新的文献求助10
5秒前
5秒前
5秒前
SciGPT应助小可采纳,获得10
5秒前
6秒前
6秒前
Akim应助若狂采纳,获得10
6秒前
Owen应助困困咪采纳,获得10
6秒前
6秒前
大雁完成签到 ,获得积分10
7秒前
就这样完成签到 ,获得积分10
7秒前
nn发布了新的文献求助10
7秒前
manan发布了新的文献求助10
7秒前
7秒前
7秒前
落落发布了新的文献求助10
7秒前
ssss完成签到,获得积分10
8秒前
余红发布了新的文献求助10
8秒前
jackcy完成签到 ,获得积分10
8秒前
成都完成签到,获得积分20
8秒前
9秒前
wjh发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
整齐的白筠完成签到,获得积分10
10秒前
WWWUBING完成签到,获得积分10
11秒前
小文发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759