甲苯
催化作用
降级(电信)
热稳定性
X射线光电子能谱
化学
化学工程
降水
纳米颗粒
材料科学
过渡金属
纳米技术
有机化学
电信
物理
气象学
计算机科学
工程类
作者
Huihui Shi,Peixin Yang,Lu Huang,Yali Wu,Duohuan Yu,Hangfei Wu,Yunhuai Zhang,Peng Xiao
标识
DOI:10.1016/j.jcis.2023.03.086
摘要
The design and manufacture of high activity and thermal stability catalysts with minimal precious metal loading is essential for deep degradation of volatile organic compounds (VOCs). In this paper, a novel single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading capacity (0.06 wt%, denoted as 0.06Pt-SA) was fabricated via one-step co-precipitation method. The 0.06Pt-SA exhibited excellent toluene degradation activity of T90 = 169 °C, matched with the nanoparticle Pt-supported CeO2/Co3O4 catalyst with more than six times higher Pt loading (0.41 wt%, denoted as 0.41Pt-NP). Moreover, the ultra-long durability (toluene conversion remains 99% after 120 h stability test) and excellent toluene degradation ability in a wide space speed range of 0.06Pt-SA were superior to that of 0.41Pt-NP catalyst. The excellent performance was derived from the strong metal-support interaction (SMSI) between the single atomic Pt and the carrier, which induced more Pt0 and Ce3+ for oxygen activation and more Co3+ for toluene removal. The in situdiffuse reflectance infrared spectroscopy (DRIFTS) experiments confirmed that the conversion of intermediates was accelerated in the reaction process, thereby promoting the toluene degradation. Our results should inspire the exploitation of noble single-atomic modification strategy for developing the low cost and high performance VOCs catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI