已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analysis and Forecast of Traffic Flow between Urban Functional Areas Based on Ride-Hailing Trajectories

流量(计算机网络) 计算机科学 运输工程 卷积神经网络 图形 交通拥挤 流量(数学) 人工智能 工程类 数学 计算机网络 理论计算机科学 几何学
作者
Zhuhua Liao,Huixian Huang,Yijiang Zhao,Yizhi Liu,Guoqiang Zhang
出处
期刊:ISPRS international journal of geo-information [MDPI AG]
卷期号:12 (4): 144-144 被引量:5
标识
DOI:10.3390/ijgi12040144
摘要

Urban planning and function layout have important implications for the journeys of a large percentage of commuters, which often make up the majority of daily traffic in many cities. Therefore, the analysis and forecast of traffic flow among urban functional areas are of great significance for detecting urban traffic flow directions and traffic congestion causes, as well as helping commuters plan routes in advance. Existing methods based on ride-hailing trajectories are relatively effective solution schemes, but they often lack in-depth analyses on time and space. In the paper, to explore the rules and trends of traffic flow among functional areas, a new spatiotemporal characteristics analysis and forecast method of traffic flow among functional areas based on urban ride-hailing trajectories is proposed. Firstly, a city is divided into areas based on the actual urban road topology, and all functional areas are generated by using areas of interest (AOI); then, according to the proximity and periodicity of inter-area traffic flow data, the periodic sequence and the adjacent sequence are established, and the topological structure is learned through graph convolutional neural (GCN) networks to extract the spatial correlation of traffic flow among functional areas. Furthermore, we propose an attention-based gated graph convolutional network (AG-GCN) forecast method, which is used to extract the temporal features of traffic flow among functional areas and make predictions. In the experiment, the proposed method is verified by using real urban traffic flow data. The results show that the method can not only mine the traffic flow characteristics among functional areas under different time periods, directions, and distances, but also forecast the spatiotemporal change trend of traffic flow among functional areas in a multi-step manner, and the accuracy of the forecasting results is higher than that of common benchmark methods, reaching 96.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的柜子应助kk采纳,获得10
刚刚
2秒前
3秒前
7秒前
7秒前
柯尔丝完成签到 ,获得积分10
8秒前
白白白完成签到,获得积分10
9秒前
9秒前
旭日东升发布了新的文献求助10
10秒前
华华发布了新的文献求助10
10秒前
鸿雁发布了新的文献求助10
10秒前
小蘑菇应助温良恭俭让采纳,获得10
11秒前
12秒前
徐林完成签到,获得积分10
12秒前
轻爱发布了新的文献求助10
13秒前
雪白的听寒完成签到 ,获得积分10
13秒前
科目三应助肉丸采纳,获得10
15秒前
uziMOF发布了新的文献求助10
15秒前
orixero应助自然小鸭子采纳,获得10
16秒前
华华完成签到,获得积分10
17秒前
标致冰海完成签到 ,获得积分10
20秒前
20秒前
20秒前
24秒前
碇真嗣发布了新的文献求助10
25秒前
田田田完成签到,获得积分20
25秒前
27秒前
28秒前
轻爱完成签到,获得积分10
29秒前
赘婿应助苏同学采纳,获得10
31秒前
碇真嗣完成签到,获得积分20
31秒前
脑洞疼应助忆点儿孤狼采纳,获得10
31秒前
陈海明发布了新的文献求助30
32秒前
32秒前
HDD发布了新的文献求助10
36秒前
38秒前
扶摇直上发布了新的文献求助10
38秒前
ppg123应助胡通才是ke研通采纳,获得10
40秒前
archer01发布了新的文献求助10
40秒前
陈海明完成签到,获得积分20
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248529
求助须知:如何正确求助?哪些是违规求助? 2891960
关于积分的说明 8269265
捐赠科研通 2559983
什么是DOI,文献DOI怎么找? 1388824
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798