Analysis and Forecast of Traffic Flow between Urban Functional Areas Based on Ride-Hailing Trajectories

流量(计算机网络) 计算机科学 运输工程 卷积神经网络 图形 交通拥挤 流量(数学) 人工智能 工程类 数学 计算机网络 理论计算机科学 几何学
作者
Zhuhua Liao,Huixian Huang,Yijiang Zhao,Yizhi Liu,Guoqiang Zhang
出处
期刊:ISPRS international journal of geo-information [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 144-144 被引量:5
标识
DOI:10.3390/ijgi12040144
摘要

Urban planning and function layout have important implications for the journeys of a large percentage of commuters, which often make up the majority of daily traffic in many cities. Therefore, the analysis and forecast of traffic flow among urban functional areas are of great significance for detecting urban traffic flow directions and traffic congestion causes, as well as helping commuters plan routes in advance. Existing methods based on ride-hailing trajectories are relatively effective solution schemes, but they often lack in-depth analyses on time and space. In the paper, to explore the rules and trends of traffic flow among functional areas, a new spatiotemporal characteristics analysis and forecast method of traffic flow among functional areas based on urban ride-hailing trajectories is proposed. Firstly, a city is divided into areas based on the actual urban road topology, and all functional areas are generated by using areas of interest (AOI); then, according to the proximity and periodicity of inter-area traffic flow data, the periodic sequence and the adjacent sequence are established, and the topological structure is learned through graph convolutional neural (GCN) networks to extract the spatial correlation of traffic flow among functional areas. Furthermore, we propose an attention-based gated graph convolutional network (AG-GCN) forecast method, which is used to extract the temporal features of traffic flow among functional areas and make predictions. In the experiment, the proposed method is verified by using real urban traffic flow data. The results show that the method can not only mine the traffic flow characteristics among functional areas under different time periods, directions, and distances, but also forecast the spatiotemporal change trend of traffic flow among functional areas in a multi-step manner, and the accuracy of the forecasting results is higher than that of common benchmark methods, reaching 96.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助溯游采纳,获得10
1秒前
金田华发布了新的文献求助10
1秒前
蟑螂恶霸完成签到 ,获得积分20
1秒前
翻斗花园葫芦娃完成签到,获得积分10
1秒前
虚心的芹发布了新的文献求助31
1秒前
dqq发布了新的文献求助10
2秒前
2秒前
2秒前
cly完成签到,获得积分10
2秒前
Ava应助YUAN采纳,获得10
2秒前
2秒前
ich完成签到,获得积分10
2秒前
3秒前
明亮无颜完成签到,获得积分10
3秒前
Alily发布了新的文献求助10
3秒前
次我完成签到,获得积分10
3秒前
鞠硕完成签到,获得积分20
4秒前
summer发布了新的文献求助10
4秒前
淡定完成签到,获得积分10
4秒前
Syuu发布了新的文献求助10
4秒前
M张完成签到,获得积分10
4秒前
way完成签到,获得积分10
5秒前
伤心猪大肠完成签到,获得积分10
5秒前
花开hhhhhhh发布了新的文献求助10
5秒前
5秒前
无奈冥发布了新的文献求助10
6秒前
老迟到的碧萱完成签到,获得积分20
6秒前
6秒前
淡定发布了新的文献求助10
7秒前
思芋奶糕发布了新的文献求助10
7秒前
月yue发布了新的文献求助10
7秒前
科研通AI5应助鱼鱼鱼采纳,获得10
7秒前
Wang完成签到,获得积分10
7秒前
7秒前
英姑应助食分子采纳,获得10
7秒前
苟子发布了新的文献求助10
8秒前
8秒前
112233完成签到,获得积分10
9秒前
哈哈镜发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949