Analysis and Forecast of Traffic Flow between Urban Functional Areas Based on Ride-Hailing Trajectories

流量(计算机网络) 计算机科学 运输工程 卷积神经网络 图形 交通拥挤 流量(数学) 人工智能 工程类 数学 计算机网络 理论计算机科学 几何学
作者
Zhuhua Liao,Huixian Huang,Yijiang Zhao,Yizhi Liu,Guoqiang Zhang
出处
期刊:ISPRS international journal of geo-information [MDPI AG]
卷期号:12 (4): 144-144 被引量:5
标识
DOI:10.3390/ijgi12040144
摘要

Urban planning and function layout have important implications for the journeys of a large percentage of commuters, which often make up the majority of daily traffic in many cities. Therefore, the analysis and forecast of traffic flow among urban functional areas are of great significance for detecting urban traffic flow directions and traffic congestion causes, as well as helping commuters plan routes in advance. Existing methods based on ride-hailing trajectories are relatively effective solution schemes, but they often lack in-depth analyses on time and space. In the paper, to explore the rules and trends of traffic flow among functional areas, a new spatiotemporal characteristics analysis and forecast method of traffic flow among functional areas based on urban ride-hailing trajectories is proposed. Firstly, a city is divided into areas based on the actual urban road topology, and all functional areas are generated by using areas of interest (AOI); then, according to the proximity and periodicity of inter-area traffic flow data, the periodic sequence and the adjacent sequence are established, and the topological structure is learned through graph convolutional neural (GCN) networks to extract the spatial correlation of traffic flow among functional areas. Furthermore, we propose an attention-based gated graph convolutional network (AG-GCN) forecast method, which is used to extract the temporal features of traffic flow among functional areas and make predictions. In the experiment, the proposed method is verified by using real urban traffic flow data. The results show that the method can not only mine the traffic flow characteristics among functional areas under different time periods, directions, and distances, but also forecast the spatiotemporal change trend of traffic flow among functional areas in a multi-step manner, and the accuracy of the forecasting results is higher than that of common benchmark methods, reaching 96.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的无血完成签到,获得积分20
1秒前
1秒前
zz完成签到,获得积分10
2秒前
机智的宝贝完成签到 ,获得积分20
3秒前
一一发布了新的文献求助10
5秒前
小爽完成签到,获得积分10
6秒前
xlk2222完成签到,获得积分10
8秒前
乘舟江行完成签到,获得积分10
8秒前
8秒前
外向的斑马完成签到 ,获得积分10
10秒前
如意的尔蝶完成签到,获得积分10
11秒前
12秒前
Erich完成签到 ,获得积分10
12秒前
zhangjw完成签到 ,获得积分10
12秒前
白茶的雪完成签到,获得积分10
13秒前
卫卫完成签到 ,获得积分10
14秒前
糖果呖咕呖咕完成签到,获得积分10
14秒前
khurram完成签到,获得积分10
14秒前
默默曼冬完成签到,获得积分10
14秒前
Jasin完成签到,获得积分10
15秒前
15秒前
前程似锦完成签到 ,获得积分10
16秒前
Abi完成签到,获得积分10
16秒前
栖于霞蔚发布了新的文献求助10
16秒前
伤心猪大肠完成签到,获得积分10
17秒前
yzlsci完成签到,获得积分0
17秒前
彭于晏应助潇潇采纳,获得10
17秒前
黑色奢华完成签到,获得积分20
17秒前
18秒前
19秒前
虾条完成签到 ,获得积分10
19秒前
wang完成签到,获得积分10
19秒前
XinEr完成签到 ,获得积分10
19秒前
huahua完成签到,获得积分10
21秒前
张庭豪完成签到,获得积分10
21秒前
棵虫完成签到,获得积分10
21秒前
妙奇完成签到,获得积分10
23秒前
24秒前
lihn完成签到,获得积分10
25秒前
emxzemxz完成签到 ,获得积分10
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081634
求助须知:如何正确求助?哪些是违规求助? 2734500
关于积分的说明 7533221
捐赠科研通 2384096
什么是DOI,文献DOI怎么找? 1264167
科研通“疑难数据库(出版商)”最低求助积分说明 612567
版权声明 597584