Analysis and Forecast of Traffic Flow between Urban Functional Areas Based on Ride-Hailing Trajectories

流量(计算机网络) 计算机科学 运输工程 卷积神经网络 图形 交通拥挤 流量(数学) 人工智能 工程类 数学 计算机网络 理论计算机科学 几何学
作者
Zhuhua Liao,Huixian Huang,Yijiang Zhao,Yizhi Liu,Guoqiang Zhang
出处
期刊:ISPRS international journal of geo-information [MDPI AG]
卷期号:12 (4): 144-144 被引量:5
标识
DOI:10.3390/ijgi12040144
摘要

Urban planning and function layout have important implications for the journeys of a large percentage of commuters, which often make up the majority of daily traffic in many cities. Therefore, the analysis and forecast of traffic flow among urban functional areas are of great significance for detecting urban traffic flow directions and traffic congestion causes, as well as helping commuters plan routes in advance. Existing methods based on ride-hailing trajectories are relatively effective solution schemes, but they often lack in-depth analyses on time and space. In the paper, to explore the rules and trends of traffic flow among functional areas, a new spatiotemporal characteristics analysis and forecast method of traffic flow among functional areas based on urban ride-hailing trajectories is proposed. Firstly, a city is divided into areas based on the actual urban road topology, and all functional areas are generated by using areas of interest (AOI); then, according to the proximity and periodicity of inter-area traffic flow data, the periodic sequence and the adjacent sequence are established, and the topological structure is learned through graph convolutional neural (GCN) networks to extract the spatial correlation of traffic flow among functional areas. Furthermore, we propose an attention-based gated graph convolutional network (AG-GCN) forecast method, which is used to extract the temporal features of traffic flow among functional areas and make predictions. In the experiment, the proposed method is verified by using real urban traffic flow data. The results show that the method can not only mine the traffic flow characteristics among functional areas under different time periods, directions, and distances, but also forecast the spatiotemporal change trend of traffic flow among functional areas in a multi-step manner, and the accuracy of the forecasting results is higher than that of common benchmark methods, reaching 96.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你都至少信我八分吧完成签到 ,获得积分10
刚刚
灵巧土豆发布了新的文献求助10
刚刚
刚刚
乐观文龙完成签到,获得积分10
1秒前
彭康杰完成签到,获得积分10
1秒前
踏实井发布了新的文献求助10
1秒前
LiShan完成签到 ,获得积分10
2秒前
2秒前
nimonimo完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
Xiaopan完成签到 ,获得积分10
3秒前
4秒前
元儿圆完成签到,获得积分10
4秒前
流光完成签到 ,获得积分10
4秒前
alooof发布了新的文献求助10
5秒前
5秒前
朱剑洪完成签到,获得积分10
5秒前
Lijia_YAO发布了新的文献求助10
5秒前
5秒前
繁多星完成签到,获得积分10
5秒前
果实发布了新的文献求助10
5秒前
烦烦烦发布了新的文献求助200
6秒前
123456发布了新的文献求助10
6秒前
6秒前
欢喜的若灵完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
7秒前
111发布了新的文献求助10
8秒前
8秒前
Tysonqu发布了新的文献求助10
8秒前
ddong驳回了顾矜应助
9秒前
一木完成签到,获得积分10
10秒前
踏实井完成签到,获得积分20
10秒前
阿瓒发布了新的文献求助10
11秒前
Even_YE完成签到,获得积分10
11秒前
付榆峰发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472573
求助须知:如何正确求助?哪些是违规求助? 4574866
关于积分的说明 14348499
捐赠科研通 4502178
什么是DOI,文献DOI怎么找? 2466966
邀请新用户注册赠送积分活动 1454927
关于科研通互助平台的介绍 1429235