T-Cell Receptor Optimization with Reinforcement Learning and Mutation Polices for Precision Immunotherapy

T细胞受体 强化学习 T细胞 免疫疗法 突变 人工智能 计算机科学 计算生物学 生物 组合数学 物理 算法 免疫系统 基因 数学 遗传学
作者
Ziqi Chen,Martin Renqiang Min,Hongyu Guo,Chao Cheng,Trevor Clancy,Xia Ning
出处
期刊:Lecture Notes in Computer Science 卷期号:: 174-191 被引量:2
标识
DOI:10.1007/978-3-031-29119-7_11
摘要

T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these peptides. This process is known as TCR recognition and constitutes a key step for immune response. Optimizing TCR sequences for TCR recognition represents a fundamental step towards the development of personalized treatments to trigger immune responses killing cancerous or virus-infected cells. In this paper, we formulated the search for these optimized TCRs as a reinforcement learning ( $$\mathop {\texttt{RL}}\limits $$ ) problem, and presented a framework $$\mathop {\texttt{TCRPPO}}\limits $$ with a mutation policy using proximal policy optimization. $$\mathop {\texttt{TCRPPO}}\limits $$ mutates TCRs into effective ones that can recognize given peptides. $$\mathop {\texttt{TCRPPO}}\limits $$ leverages a reward function that combines the likelihoods of mutated sequences being valid TCRs measured by a new scoring function based on deep autoencoders, with the probabilities of mutated sequences recognizing peptides from a peptide-TCR interaction predictor. We compared $$\mathop {\texttt{TCRPPO}}\limits $$ with multiple baseline methods and demonstrated that $$\mathop {\texttt{TCRPPO}}\limits $$ significantly outperforms all the baseline methods to generate positive binding and valid TCRs. These results demonstrate the potential of $$\mathop {\texttt{TCRPPO}}\limits $$ for both precision immunotherapy and peptide-recognizing TCR motif discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eason发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
爱静静应助科研通管家采纳,获得30
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
Singularity应助dominate采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
小pan完成签到 ,获得积分10
5秒前
6秒前
丁小丁发布了新的文献求助10
6秒前
huang完成签到,获得积分10
6秒前
ptalala发布了新的文献求助10
6秒前
8秒前
9秒前
儒雅闭月发布了新的文献求助10
10秒前
情怀应助manman采纳,获得10
10秒前
上官若男应助大方百招采纳,获得10
10秒前
10秒前
orixero应助李海妍采纳,获得10
12秒前
12秒前
huang发布了新的文献求助10
12秒前
Hou发布了新的文献求助10
12秒前
13秒前
薇儿发布了新的文献求助10
13秒前
传奇3应助丁小丁采纳,获得10
14秒前
11111发布了新的文献求助10
15秒前
wz关闭了wz文献求助
15秒前
lv发布了新的文献求助10
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626