A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging

医学 骶髂关节炎 金标准(测试) 磁共振成像 队列 轴性脊柱炎 放射科 核医学 内科学
作者
Adrien Bordner,Théodore Aouad,Clementina López-Medina,Sisi Yang,Anna Moltó,Hugues Talbot,Maxime Dougados,A. Feydy
出处
期刊:Diagnostic and interventional imaging [Elsevier BV]
卷期号:104 (7-8): 373-383 被引量:8
标识
DOI:10.1016/j.diii.2023.03.008
摘要

The purpose of this study was to develop and evaluate a deep learning model to detect bone marrow edema (BME) in sacroiliac joints and predict the MRI Assessment of SpondyloArthritis International Society (ASAS) definition of active sacroiliitis in patients with chronic inflammatory back pain.MRI examinations of patients from the French prospective multicenter DESIR cohort (DEvenir des Spondyloarthropathies Indifférenciées Récentes) were used for training, validation and testing. Patients with inflammatory back pain lasting three months to three years were recruited. Test datasets were from MRI follow-ups at five years and ten years. The model was evaluated using an external test dataset from the ASAS cohort. A neuronal network classifier (mask-RCNN) was trained and evaluated for sacroiliac joints detection and BME classification. Diagnostic capabilities of the model to predict ASAS MRI active sacroiliitis (BME in at least two half-slices) were assessed using Matthews correlation coefficient (MCC), sensitivity, specificity, accuracy and AUC. The gold standard was experts' majority decision.A total of 256 patients with 362 MRI examinations from the DESIR cohort were included, with 27% meeting the ASAS definition for experts. A total of 178 MRI examinations were used for the training set, 25 for the validation set and 159 for the evaluation set. MCCs for DESIR baseline, 5-years, and 10-years follow-up were 0.90 (n = 53), 0.64 (n = 70), and 0.61 (n = 36), respectively. AUCs for predicting ASAS MRI were 0.98 (95% CI: 0.93-1), 0.90 (95% CI: 0.79-1), and 0.80 (95% CI: 0.62-1), respectively. The ASAS external validation cohort included 47 patients (mean age 36 ± 10 [SD] years; women, 51%) with 19% meeting the ASAS definition. MCC was 0.62, sensitivity 56% (95% CI: 42-70), specificity 100% (95% CI: 100-100) and AUC 0.76 (95% CI: 0.57-0.95).The deep learning model achieves performance close to those of experts for BME detection in sacroiliac joints and determination of active sacroiliitis according to the ASAS definition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu完成签到,获得积分10
刚刚
GingerF应助dlindl采纳,获得50
刚刚
刚刚
1秒前
胖宏完成签到 ,获得积分10
1秒前
章jj完成签到,获得积分10
1秒前
神山识完成签到,获得积分10
1秒前
随缘LLa完成签到,获得积分10
1秒前
cqj123发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
比比谁的速度快应助Ran采纳,获得30
2秒前
小篮子完成签到,获得积分10
3秒前
wu发布了新的文献求助10
3秒前
可耐的紫夏完成签到,获得积分10
3秒前
wyx完成签到 ,获得积分10
4秒前
Uae发布了新的文献求助10
4秒前
傅英俊完成签到,获得积分10
5秒前
JamesPei应助坚强打工人采纳,获得10
5秒前
ChenChen发布了新的文献求助10
5秒前
笑笑完成签到,获得积分10
6秒前
mxxxxx发布了新的文献求助10
6秒前
章jj发布了新的文献求助10
6秒前
6秒前
6秒前
三水发布了新的文献求助10
6秒前
6秒前
小云杉应助pp采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
LI关闭了LI文献求助
9秒前
小马甲应助栖木采纳,获得10
10秒前
living笑白发布了新的文献求助10
10秒前
逆向追逐发布了新的文献求助10
11秒前
哈哈完成签到,获得积分10
11秒前
阳光血茗完成签到,获得积分10
11秒前
流雨发布了新的文献求助10
11秒前
12秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339