A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging

医学 骶髂关节炎 金标准(测试) 磁共振成像 队列 轴性脊柱炎 放射科 核医学 内科学
作者
Adrien Bordner,Théodore Aouad,Clementina López-Medina,Sisi Yang,Anna Moltó,Hugues Talbot,Maxime Dougados,A. Feydy
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:104 (7-8): 373-383 被引量:8
标识
DOI:10.1016/j.diii.2023.03.008
摘要

The purpose of this study was to develop and evaluate a deep learning model to detect bone marrow edema (BME) in sacroiliac joints and predict the MRI Assessment of SpondyloArthritis International Society (ASAS) definition of active sacroiliitis in patients with chronic inflammatory back pain.MRI examinations of patients from the French prospective multicenter DESIR cohort (DEvenir des Spondyloarthropathies Indifférenciées Récentes) were used for training, validation and testing. Patients with inflammatory back pain lasting three months to three years were recruited. Test datasets were from MRI follow-ups at five years and ten years. The model was evaluated using an external test dataset from the ASAS cohort. A neuronal network classifier (mask-RCNN) was trained and evaluated for sacroiliac joints detection and BME classification. Diagnostic capabilities of the model to predict ASAS MRI active sacroiliitis (BME in at least two half-slices) were assessed using Matthews correlation coefficient (MCC), sensitivity, specificity, accuracy and AUC. The gold standard was experts' majority decision.A total of 256 patients with 362 MRI examinations from the DESIR cohort were included, with 27% meeting the ASAS definition for experts. A total of 178 MRI examinations were used for the training set, 25 for the validation set and 159 for the evaluation set. MCCs for DESIR baseline, 5-years, and 10-years follow-up were 0.90 (n = 53), 0.64 (n = 70), and 0.61 (n = 36), respectively. AUCs for predicting ASAS MRI were 0.98 (95% CI: 0.93-1), 0.90 (95% CI: 0.79-1), and 0.80 (95% CI: 0.62-1), respectively. The ASAS external validation cohort included 47 patients (mean age 36 ± 10 [SD] years; women, 51%) with 19% meeting the ASAS definition. MCC was 0.62, sensitivity 56% (95% CI: 42-70), specificity 100% (95% CI: 100-100) and AUC 0.76 (95% CI: 0.57-0.95).The deep learning model achieves performance close to those of experts for BME detection in sacroiliac joints and determination of active sacroiliitis according to the ASAS definition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spongeisla完成签到,获得积分10
1秒前
davyean完成签到,获得积分10
1秒前
SAINT完成签到 ,获得积分10
1秒前
奋斗不止发布了新的文献求助10
3秒前
大气的鹭洋完成签到,获得积分10
3秒前
Liziqi823完成签到,获得积分10
6秒前
绿袖子完成签到,获得积分10
9秒前
勤恳的千秋完成签到 ,获得积分10
9秒前
YYY完成签到,获得积分10
10秒前
苗槐完成签到,获得积分10
10秒前
陈文学完成签到,获得积分10
10秒前
科研通AI2S应助fortuneteller采纳,获得10
11秒前
shtatbf完成签到,获得积分10
13秒前
无味完成签到,获得积分10
14秒前
Tin完成签到,获得积分10
17秒前
追寻的冬寒完成签到 ,获得积分10
18秒前
开庆完成签到,获得积分10
19秒前
夹竹桃完成签到 ,获得积分20
20秒前
顺利兰完成签到 ,获得积分10
21秒前
井野浮应助奔铂儿钯采纳,获得20
21秒前
orixero应助瘦瘦采纳,获得10
22秒前
高大绝义完成签到,获得积分10
22秒前
科研通AI2S应助hello采纳,获得10
22秒前
VDC应助hello采纳,获得30
22秒前
SH123完成签到 ,获得积分10
23秒前
虚拟的尔蓝完成签到 ,获得积分10
24秒前
无一完成签到 ,获得积分10
26秒前
爱吃肉肉的蚂蚁完成签到,获得积分10
28秒前
众人皆醉我独醒完成签到,获得积分10
33秒前
Keyuuu30完成签到,获得积分10
33秒前
EricSai完成签到,获得积分10
34秒前
荔枝完成签到 ,获得积分10
36秒前
37秒前
Raul完成签到 ,获得积分10
42秒前
甜蜜谷蕊完成签到,获得积分10
42秒前
北辰完成签到 ,获得积分10
42秒前
turui完成签到 ,获得积分10
44秒前
社恐Forza完成签到 ,获得积分10
45秒前
枫枫829完成签到 ,获得积分10
48秒前
tfsn20完成签到,获得积分0
49秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229787
求助须知:如何正确求助?哪些是违规求助? 2877313
关于积分的说明 8198793
捐赠科研通 2544774
什么是DOI,文献DOI怎么找? 1374645
科研通“疑难数据库(出版商)”最低求助积分说明 647033
邀请新用户注册赠送积分活动 621851